Suppr超能文献

使用多相机阵列扫描仪(MCAS)以细胞分辨率进行快速3D成像用于数字细胞病理学。

Rapid 3D imaging at cellular resolution for digital cytopathology with a multi-camera array scanner (MCAS).

作者信息

Kim Kanghyun, Chaware Amey, Cook Clare B, Xu Shiqi, Abdelmalak Monica, Cooke Colin, Zhou Kevin C, Harfouche Mark, Reamey Paul, Saliu Veton, Doman Jed, Dugo Clay, Horstmeyer Gregor, Davis Richard, Taylor-Cho Ian, Foo Wen-Chi, Kreiss Lucas, Jiang Xiaoyin Sara, Horstmeyer Roarke

机构信息

Department of Biomedical Engineering, Duke University, Durham, 27708, NC, USA.

Department of Pathology, Duke University Medical Center, Durham, 27708, NC, USA.

出版信息

Npj Imaging. 2024 Oct 1;2(1):39. doi: 10.1038/s44303-024-00042-2.

Abstract

Optical microscopy has long been the standard method for diagnosis in cytopathology. Whole slide scanners can image and digitize large sample areas automatically, but are slow, expensive and therefore not widely available. Clinical diagnosis of cytology specimens is especially challenging since these samples are both spread over large areas and thick, which requires 3D capture. Here, we introduce a new parallelized microscope for scanning thick specimens across extremely wide fields-of-view (54 × 72 mm) at 1.2 and 0.6 μm resolutions, accompanied by machine learning software to rapidly assess these 16 gigapixel scans. This Multi-Camera Array Scanner (MCAS) comprises 48 micro-cameras closely arranged to simultaneously image different areas. By capturing 624 megapixels per snapshot, the MCAS is significantly faster than most conventional whole-slide scanners. We used this system to digitize entire cytology samples (scanning three entire slides in 3D in just several minutes) and demonstrate two machine learning techniques to assist pathologists: first, an adenocarcinoma detection model in lung specimens (0.73 recall); second, a slide-level classification model of lung smears (0.969 AUC).

摘要

光学显微镜长期以来一直是细胞病理学诊断的标准方法。全玻片扫描仪可以自动对大样本区域进行成像和数字化处理,但速度慢、成本高,因此尚未广泛应用。细胞学标本的临床诊断尤其具有挑战性,因为这些样本分布区域大且厚,需要进行三维采集。在此,我们介绍一种新型并行显微镜,可在1.2微米和0.6微米分辨率下,跨极宽视野(54×72毫米)扫描厚标本,并配有机器学习软件,以快速评估这些160亿像素的扫描图像。这种多相机阵列扫描仪(MCAS)由48个微相机紧密排列而成,可同时对不同区域进行成像。通过每次快照捕获6.24亿像素,MCAS的速度明显快于大多数传统全玻片扫描仪。我们使用该系统对整个细胞学样本进行数字化处理(仅需几分钟就能对三张完整玻片进行三维扫描),并展示了两种协助病理学家的机器学习技术:第一,肺部标本中的腺癌检测模型(召回率0.73);第二, 肺部涂片的玻片水平分类模型(AUC为0.969)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4529/12118648/2d5846b80db2/44303_2024_42_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验