Suppr超能文献

利用改进的深度学习方法检测复杂环境下玉米的叶片卷曲。

Leaf rolling detection in maize under complex environments using an improved deep learning method.

机构信息

College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China.

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.

出版信息

Plant Mol Biol. 2024 Aug 23;114(5):92. doi: 10.1007/s11103-024-01491-4.

Abstract

Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed.

摘要

叶片卷曲是植物进化出的一种常见适应性反应,可以抵消各种环境胁迫的不利影响。深入了解叶片卷曲变化的机制为研究人员提供了一个独特的机会,可以增强表现出叶片卷曲的作物(如玉米)的抗胁迫能力。为了更深入地了解叶片卷曲,确定这种表型的发生和程度至关重要。虽然传统的手动叶片卷曲检测既缓慢又费力,但在我们的研究范围内,针对叶片卷曲的高通量检测方法的研究仍然有限。在这项研究中,我们提出了一种使用 YOLOv8 模型检测玉米叶片卷曲的方法。我们的方法 LRD-YOLO 集成了两个重要的改进:卷积块注意力模块,用于增强特征提取能力;变形卷积网络 v2,用于增强对目标形状和大小变化的适应性。通过在一个包含严重遮挡、叶片尺度和形状变化以及复杂背景场景的数据集上进行实验,我们的方法实现了令人印象深刻的平均精度 81.6%,超过了当前的最先进方法。此外,LRD-YOLO 模型仅需要 8.0 G 的浮点运算和 3.48 M 的参数。我们提出了一种玉米叶片卷曲检测的创新方法,实验结果表明 LRD-YOLO 在精确检测复杂场景中的叶片卷曲方面具有较高的效率,同时保持实时推理速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69bf/11343899/7ab4f95ff0ab/11103_2024_1491_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验