Suppr超能文献

线粒体呼吸的昼夜节律。

Circadian rhythms in mitochondrial respiration.

机构信息

Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.

Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.

出版信息

J Mol Endocrinol. 2018 Apr;60(3):R115-R130. doi: 10.1530/JME-17-0196. Epub 2018 Jan 29.

Abstract

Many physiological processes are regulated with a 24-h periodicity to anticipate the environmental changes of daytime to nighttime and vice versa. These 24-h regulations, commonly termed circadian rhythms, among others control the sleep-wake cycle, locomotor activity and preparation for food availability during the active phase (daytime for humans and nighttime for nocturnal animals). Disturbing circadian rhythms at the organ or whole-body level by social jetlag or shift work, increases the risk to develop chronic metabolic diseases such as type 2 diabetes mellitus. The molecular basis of this risk is a topic of increasing interest. Mitochondria are essential organelles that produce the majority of energy in eukaryotes by converting lipids and carbohydrates into ATP through oxidative phosphorylation. To adapt to the ever-changing environment, mitochondria are highly dynamic in form and function and a loss of this flexibility is linked to metabolic diseases. Interestingly, recent studies have indicated that changes in mitochondrial morphology (i.e., fusion and fission) as well as generation of new mitochondria are dependent on a viable circadian clock. In addition, fission and fusion processes display diurnal changes that are aligned to the light/darkness cycle. Besides morphological changes, mitochondrial respiration also displays diurnal changes. Disturbing the molecular clock in animal models leads to abrogated mitochondrial rhythmicity and altered respiration. Moreover, mitochondrial-dependent production of reactive oxygen species, which plays a role in cellular signaling, has also been linked to the circadian clock. In this review, we will summarize recent advances in the study of circadian rhythms of mitochondria and how this is linked to the molecular circadian clock.

摘要

许多生理过程都以 24 小时的周期性进行调节,以预测白天到黑夜和反之亦然的环境变化。这些 24 小时的调节,通常被称为昼夜节律,除其他外,控制着睡眠-觉醒周期、运动活动和在活动期(对人类来说是白天,对夜间动物来说是晚上)准备食物供应。社会时差或轮班工作扰乱器官或全身水平的昼夜节律,会增加患 2 型糖尿病等慢性代谢性疾病的风险。这种风险的分子基础是一个日益引起关注的话题。线粒体是必不可少的细胞器,通过氧化磷酸化将脂质和碳水化合物转化为 ATP,从而在真核生物中产生大部分能量。为了适应不断变化的环境,线粒体在形态和功能上具有高度的动态性,这种灵活性的丧失与代谢性疾病有关。有趣的是,最近的研究表明,线粒体形态的变化(即融合和裂变)以及新线粒体的产生依赖于可行的生物钟。此外,裂变和融合过程显示出与光/暗周期一致的昼夜变化。除了形态变化外,线粒体呼吸也显示出昼夜变化。在动物模型中扰乱分子钟会导致线粒体节律性丧失和呼吸改变。此外,线粒体依赖性活性氧物质的产生,它在细胞信号转导中发挥作用,也与生物钟有关。在这篇综述中,我们将总结最近关于线粒体昼夜节律的研究进展,以及这与分子生物钟的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/5854864/64ba36448d75/jme-60-R115-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验