Suppr超能文献

用于多状态痴呆诊断的多模态神经影像与基因数据的特征学习与融合

Feature Learning and Fusion of Multimodality Neuroimaging and Genetic Data for Multi-status Dementia Diagnosis.

作者信息

Zhou Tao, Thung Kim-Han, Zhu Xiaofeng, Shen Dinggang

机构信息

Department of Radiology, BRIC, University of North Carolina, Chapel Hill, USA.

出版信息

Mach Learn Med Imaging. 2017 Sep;10541:132-140. doi: 10.1007/978-3-319-67389-9_16. Epub 2017 Sep 7.

Abstract

In this paper, we aim to maximally utilize multimodality neuroimaging and genetic data to predict Alzheimer's disease (AD) and its prodromal status, i.e., a multi-status dementia diagnosis problem. Multimodality neuroimaging data such as MRI and PET provide valuable insights to abnormalities, and genetic data such as Single Nucleotide Polymorphism (SNP) provide information about a patient's AD risk factors. When used in conjunction, AD diagnosis may be improved. However, these data are heterogeneous (e.g., having different data distributions), and have different number of samples (e.g., PET data is having far less number of samples than the numbers of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel , where the deep neural network is trained stage-wise. Each stage of the network learns feature representations for different combination of modalities, via effective training using . Specifically, in the first stage, we learn latent representations (i.e., high-level features) for each modality independently, so that the heterogeneity between modalities can be better addressed and then combined in the next stage. In the second stage, we learn the joint latent features for each pair of modality combination by using the high-level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. We have tested our framework on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset for multi-status AD diagnosis, and the experimental results show that the proposed framework outperforms other methods.

摘要

在本文中,我们旨在最大程度地利用多模态神经影像和基因数据来预测阿尔茨海默病(AD)及其前驱状态,即一个多状态痴呆诊断问题。诸如MRI和PET等多模态神经影像数据为异常情况提供了有价值的见解,而诸如单核苷酸多态性(SNP)等基因数据则提供了有关患者AD风险因素的信息。当联合使用时,AD诊断可能会得到改善。然而,这些数据是异质的(例如,具有不同的数据分布),并且样本数量不同(例如,PET数据的样本数量远少于MRI或SNP的数量)。因此,使用这些数据学习一个有效的模型具有挑战性。为此,我们提出了一种新颖的 ,其中深度神经网络是分阶段训练的。网络的每个阶段通过使用 进行有效训练,为不同模态组合学习特征表示。具体而言,在第一阶段,我们独立地为每个模态学习潜在表示(即高级特征),以便能够更好地处理模态之间的异质性,然后在下一阶段进行组合。在第二阶段,我们使用从第一阶段学到的高级特征为每对模态组合学习联合潜在特征。在第三阶段,我们通过融合从第二阶段学到的联合潜在特征来学习诊断标签。我们已经在阿尔茨海默病神经影像倡议(ADNI)数据集上测试了我们的框架用于多状态AD诊断,实验结果表明所提出的框架优于其他方法。

相似文献

引用本文的文献

5
A Deep Neural Network-Based Method for Prediction of Dementia Using Big Data.基于深度学习的大数据预测痴呆方法
Int J Environ Res Public Health. 2021 May 18;18(10):5386. doi: 10.3390/ijerph18105386.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验