Centre RAPSODEE, Ecole des Mines Albi, Campus Jarlard, 81013 Albi Cedex, France; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
Centre RAPSODEE, Ecole des Mines Albi, Campus Jarlard, 81013 Albi Cedex, France; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
Sci Total Environ. 2018 Jun 1;626:744-753. doi: 10.1016/j.scitotenv.2018.01.151. Epub 2018 Feb 19.
Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management.
城市固体废物(MSW)热解和气化技术正在发展,这是由更可持续的废物能源化(WtE)选择所推动的。由于对现有 WtE 技术的综合比较相当罕见,因此本研究旨在使用两组数据进行生命周期评估(LCA):理论分析和大型商业工厂的案例研究。七种涉及热转化(热解、气化、焚烧)和能源利用(蒸汽循环、燃气轮机/联合循环、内燃机)的系统进行了建模。理论分析结果表明,热解和气化,特别是与燃气轮机/联合循环相结合,有潜力减轻环境负荷。这是由于提高了能源效率,减少了基于化石燃料的能源消耗,以及通过合成气燃烧减少了工艺排放所带来的好处。对四个运行工厂(焚烧、热解、气化、气化-熔融)的比较证实了气化工厂的性能更好,这归因于合成气的净化。现代焚烧在目前优于热解和气化-熔融,这是由于现代烟气净化、热电联产(CHP)循环和灰分再利用的有效性。敏感性分析强调了工厂效率和热解焦土地利用的关键作用。该研究表明,MSW 的异质性和合成气净化技术是当前基于热解/气化的 WtE 的最相关障碍。潜在的发展应纳入所有工艺方面,以提高能源效率,改善进入废物的质量,并实现有效的残留物管理。