Department of Biostatistics, UCLA School of Public Health, Los Angeles, CA 90095-1772, USA.
Stat Med. 2018 May 10;37(10):1696-1710. doi: 10.1002/sim.7612. Epub 2018 Feb 5.
Researchers collected multiple measurements on patients with schizophrenia and their relatives, as well as control subjects and their relatives, to study vulnerability factors for schizophrenics and their near relatives. Observations across individuals from the same family are correlated, and also the multiple outcome measures on the same individuals are correlated. Traditional data analyses model outcomes separately and thus do not provide information about the interrelationships among outcomes. We propose a novel Bayesian family factor model (BFFM), which extends the classical confirmatory factor analysis model to explain the correlations among observed variables using a combination of family-member and outcome factors. Traditional methods for fitting confirmatory factor analysis models, such as full-information maximum likelihood (FIML) estimation using quasi-Newton optimization (QNO), can have convergence problems and Heywood cases (lack of convergence) caused by empirical underidentification. In contrast, modern Bayesian Markov chain Monte Carlo handles these inference problems easily. Simulations compare the BFFM to FIML-QNO in settings where the true covariance matrix is identified, close to not identified, and not identified. For these settings, FIML-QNO fails to fit the data in 13%, 57%, and 85% of the cases, respectively, while MCMC provides stable estimates. When both methods successfully fit the data, estimates from the BFFM have smaller variances and comparable mean-squared errors. We illustrate the BFFM by analyzing data on data from schizophrenics and their family members.
研究人员收集了精神分裂症患者及其亲属、对照组及其亲属的多项测量数据,以研究精神分裂症患者及其近亲的易感性因素。来自同一家庭的个体的观察结果是相关的,并且对同一个体的多项测量结果也是相关的。传统的数据分析方法分别对结果进行建模,因此无法提供有关结果之间相互关系的信息。我们提出了一种新颖的贝叶斯家族因子模型 (BFFM),它将经典的验证性因子分析模型扩展到使用家庭成员和结果因子的组合来解释观察变量之间的相关性。拟合验证性因子分析模型的传统方法,例如使用拟牛顿优化 (QNO) 的全信息最大似然 (FIML) 估计,可能会由于经验上的未识别而导致收敛问题和 Heywood 情况(缺乏收敛)。相比之下,现代贝叶斯马尔可夫链蒙特卡罗很容易处理这些推理问题。模拟比较了 BFFM 和 FIML-QNO 在真实协方差矩阵可识别、接近不可识别和不可识别的情况下的表现。对于这些设置,FIML-QNO 分别在 13%、57%和 85%的情况下无法拟合数据,而 MCMC 提供了稳定的估计。当两种方法都成功拟合数据时,BFFM 的估计值具有较小的方差和可比的均方误差。我们通过分析精神分裂症患者及其家庭成员的数据来说明 BFFM。