Suppr超能文献

用于研究脑化学的微加工探针:综述

Microfabricated Probes for Studying Brain Chemistry: A Review.

作者信息

Ngernsutivorakul Thitaphat, White Thomas S, Kennedy Robert T

机构信息

Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109, USA.

Macromolecular Science and Engineering, University of Michigan, 3003E, NCRC Building 28, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.

出版信息

Chemphyschem. 2018 May 22;19(10):1128-1142. doi: 10.1002/cphc.201701180. Epub 2018 Feb 5.

Abstract

Probe techniques for monitoring in vivo chemistry (e.g., electrochemical sensors and microdialysis sampling probes) have significantly contributed to a better understanding of neurotransmission in correlation to behaviors and neurological disorders. Microfabrication allows construction of neural probes with high reproducibility, scalability, design flexibility, and multiplexed features. This technology has translated well into fabricating miniaturized neurochemical probes for electrochemical detection and sampling. Microfabricated electrochemical probes provide a better control of spatial resolution with multisite detection on a single compact platform. This development allows the observation of heterogeneity of neurochemical activity precisely within the brain region. Microfabricated sampling probes are starting to emerge that enable chemical measurements at high spatial resolution and potential for reducing tissue damage. Recent advancement in analytical methods also facilitates neurochemical monitoring at high temporal resolution. Furthermore, a positive feature of microfabricated probes is that they can be feasibly built with other sensing and stimulating platforms including optogenetics. Such integrated probes will empower researchers to precisely elucidate brain function and develop novel treatments for neurological disorders.

摘要

用于监测体内化学物质的探针技术(例如,电化学传感器和微透析采样探针)为更好地理解与行为和神经疾病相关的神经传递做出了重大贡献。微制造技术使得能够构建具有高再现性、可扩展性、设计灵活性和多重功能的神经探针。这项技术已很好地转化为制造用于电化学检测和采样的小型化神经化学探针。微制造的电化学探针在单个紧凑平台上通过多部位检测能够更好地控制空间分辨率。这一进展使得能够精确观察大脑区域内神经化学活动的异质性。微制造的采样探针开始出现,其能够实现高空间分辨率的化学测量,并有可能减少组织损伤。分析方法的最新进展也有助于实现高时间分辨率的神经化学监测。此外,微制造探针的一个积极特点是它们可以与包括光遗传学在内的其他传感和刺激平台切实地结合在一起。这种集成探针将使研究人员能够精确阐明大脑功能,并开发出针对神经疾病的新型治疗方法。

相似文献

1
Microfabricated Probes for Studying Brain Chemistry: A Review.
Chemphyschem. 2018 May 22;19(10):1128-1142. doi: 10.1002/cphc.201701180. Epub 2018 Feb 5.
3
Microfabricated sampling probes for in vivo monitoring of neurotransmitters.
Anal Chem. 2013 Apr 16;85(8):3828-31. doi: 10.1021/ac400579x. Epub 2013 Apr 3.
4
Microfabrication and in Vivo Performance of a Microdialysis Probe with Embedded Membrane.
Anal Chem. 2016 Jan 19;88(2):1230-7. doi: 10.1021/acs.analchem.5b03541. Epub 2016 Jan 4.
5
A review of microfabricated electrochemical biosensors for DNA detection.
Biosens Bioelectron. 2019 Jun 1;134:57-67. doi: 10.1016/j.bios.2019.03.055. Epub 2019 Mar 29.
6
Silicon microfabrication technologies for biology integrated advance devices and interfaces.
Biosens Bioelectron. 2023 Oct 1;237:115503. doi: 10.1016/j.bios.2023.115503. Epub 2023 Jul 13.
7
Electrochemical Sensors for Neurochemicals: Recent Update.
ACS Sens. 2019 Dec 27;4(12):3102-3118. doi: 10.1021/acssensors.9b01713. Epub 2019 Nov 25.
8
Microfabricated reference electrodes and their biosensing applications.
Sensors (Basel). 2010;10(3):1679-715. doi: 10.3390/s100301679. Epub 2010 Mar 2.
10
Subcellular probes for neurochemical recording from multiple brain sites.
Lab Chip. 2017 Mar 14;17(6):1104-1115. doi: 10.1039/c6lc01398h.

引用本文的文献

1
In Situ Electrically Resettable Field-Effect Transistor Biosensors for Continuous and Multiplexed Neurotransmitter Detection.
Adv Sci (Weinh). 2025 Aug;12(31):e04497. doi: 10.1002/advs.202504497. Epub 2025 May 28.
2
Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing.
Nanomicro Lett. 2024 Oct 7;17(1):34. doi: 10.1007/s40820-024-01534-x.
4
High-precision monitoring of and feedback control over drug concentrations in the brains of freely moving rats.
Sci Adv. 2023 May 19;9(20):eadg3254. doi: 10.1126/sciadv.adg3254. Epub 2023 May 17.
5
Accelerating the development of implantable neurochemical biosensors by using existing clinically applied depth electrodes.
Anal Bioanal Chem. 2023 Mar;415(6):1137-1147. doi: 10.1007/s00216-022-04445-1. Epub 2022 Dec 2.
7
Low-Frequency Oscillations of In Vivo Ambient Extracellular Brain Serotonin.
Cells. 2022 May 23;11(10):1719. doi: 10.3390/cells11101719.
8
Implantable Aptamer-Graphene Microtransistors for Real-Time Monitoring of Neurochemical Release in Vivo.
Nano Lett. 2022 May 11;22(9):3668-3677. doi: 10.1021/acs.nanolett.2c00289. Epub 2022 Apr 19.
10
Letting the little light of mind shine: Advances and future directions in neurochemical detection.
Neurosci Res. 2022 Jun;179:65-78. doi: 10.1016/j.neures.2021.11.012. Epub 2021 Nov 30.

本文引用的文献

2
State-of-the-art MEMS and microsystem tools for brain research.
Microsyst Nanoeng. 2017 Jan 2;3:16066. doi: 10.1038/micronano.2016.66. eCollection 2017.
3
Characterization of a Thiol-Ene/Acrylate-Based Polymer for Neuroprosthetic Implants.
ACS Omega. 2017 Aug 31;2(8):4604-4611. doi: 10.1021/acsomega.7b00834. Epub 2017 Aug 16.
4
Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites.
Sensors (Basel). 2017 Oct 19;17(10):2388. doi: 10.3390/s17102388.
5
Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.
Materials (Basel). 2011 Feb 25;4(3):487-526. doi: 10.3390/ma4030487.
6
Emerging Droplet Microfluidics.
Chem Rev. 2017 Jun 28;117(12):7964-8040. doi: 10.1021/acs.chemrev.6b00848. Epub 2017 May 24.
7
Design and manufacturing challenges of optogenetic neural interfaces: a review.
J Neural Eng. 2017 Aug;14(4):041001. doi: 10.1088/1741-2552/aa7004.
8
Combined fMRI-MRS acquires simultaneous glutamate and BOLD-fMRI signals in the human brain.
Neuroimage. 2017 Jul 15;155:113-119. doi: 10.1016/j.neuroimage.2017.04.030. Epub 2017 Apr 19.
9
Microfluidic neural probes: in vivo tools for advancing neuroscience.
Lab Chip. 2017 Apr 11;17(8):1406-1435. doi: 10.1039/c7lc00103g.
10
Subcellular probes for neurochemical recording from multiple brain sites.
Lab Chip. 2017 Mar 14;17(6):1104-1115. doi: 10.1039/c6lc01398h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验