Institute of Photonics, Vienna University of Technology, Gußhausstraße 27-29, 1040, Vienna, Austria.
Nat Commun. 2018 Feb 6;9(1):516. doi: 10.1038/s41467-018-02830-y.
Strain engineering is widely used in material science to tune the (opto-)electronic properties of materials and enhance the performance of devices. Two-dimensional atomic crystals are a versatile playground to study the influence of strain, as they can sustain very large deformations without breaking. Various optical techniques have been employed to probe strain in two-dimensional materials, including micro-Raman and photoluminescence spectroscopy. Here we demonstrate that optical second harmonic generation constitutes an even more powerful technique, as it allows extraction of the full strain tensor with a spatial resolution below the optical diffraction limit. Our method is based on the strain-induced modification of the nonlinear susceptibility tensor due to a photoelastic effect. Using a two-point bending technique, we determine the photoelastic tensor elements of molybdenum disulfide. Once identified, these parameters allow us to spatially image the two-dimensional strain field in an inhomogeneously strained sample.
应变工程在材料科学中被广泛应用于调整材料的(光)电子性质,提高器件性能。二维原子晶体是研究应变影响的通用平台,因为它们可以在不破裂的情况下承受非常大的变形。各种光学技术已被用于探测二维材料中的应变,包括微拉曼和光致发光光谱学。在这里,我们证明了光学二次谐波产生是一种更强大的技术,因为它可以通过低于光学衍射极限的空间分辨率提取完整的应变张量。我们的方法基于光弹效应引起的非线性磁化率张量的应变诱导修饰。使用两点弯曲技术,我们确定了二硫化钼的光弹张量元素。一旦确定,这些参数允许我们在不均匀应变的样品中空间成像二维应变场。