Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.
Nanoscale. 2018 Feb 15;10(7):3556-3565. doi: 10.1039/c7nr05430k.
The regulation of human pluripotent stem cell (hPSC) behaviors has been mainly studied through exploration of biochemical factors. However, the current directed differentiation protocols for hPSCs that completely rely on biochemical factors remain suboptimal. It has recently become evident that coexisting biophysical signals in the stem cell microenvironment, including nanotopographic cues, can provide potent regulatory signals to mediate adult stem cell behaviors, including self-renewal and differentiation. Herein, we utilized a recently developed, large-scale nanofabrication technique based on reactive-ion etching (RIE) to generate random nanoscale structures on glass surfaces with high precision and reproducibility. We report here that hPSCs are sensitive to nanotopographic cues and such nanotopographic sensitivity can be leveraged for improving directed neuronal differentiation of hPSCs. We demonstrate early neuroepithelial conversion and motor neuron (MN) progenitor differentiation of hPSCs can be promoted using nanoengineered topographic substrates. We further explore how hPSCs sense the substrate nanotopography and relay this biophysical signal through a regulatory signaling network involving cell adhesion, the actomyosin cytoskeleton, and Hippo/YAP signaling to mediate the neuroepithelial induction of hPSCs. Our study provides an efficient method for large-scale production of MNs from hPSCs, useful for regenerative medicine and cell-based therapies.
人类多能干细胞(hPSC)行为的调控主要通过探索生化因素来进行研究。然而,目前完全依赖生化因素的 hPSC 定向分化方案仍不尽人意。最近人们已经清楚地认识到,干细胞微环境中并存的生物物理信号,包括纳米拓扑线索,可以提供有效的调节信号来介导包括自我更新和分化在内的成体干细胞行为。在此,我们利用最近开发的基于反应离子刻蚀(RIE)的大规模纳米制造技术,以高精度和可重复性在玻璃表面上生成随机纳米级结构。我们在此报告 hPSC 对纳米拓扑线索敏感,并且这种纳米拓扑敏感性可用于改善 hPSC 的定向神经元分化。我们证明使用纳米工程化的拓扑底物可以促进 hPSC 的早期神经上皮转化和运动神经元(MN)祖细胞分化。我们进一步探讨了 hPSC 如何感知基底纳米拓扑结构,并通过涉及细胞黏附、肌动球蛋白细胞骨架和 Hippo/YAP 信号通路的调节信号网络来传递这种生物物理信号,从而介导 hPSC 的神经上皮诱导。我们的研究为从 hPSC 高效生产 MN 提供了一种方法,可用于再生医学和基于细胞的治疗。