Suppr超能文献

通过可控增加边界层粘度来逆转电趋性方向。

Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity.

作者信息

Kobylkevich Brian M, Sarkar Anyesha, Carlberg Brady R, Huang Ling, Ranjit Suman, Graham David M, Messerli Mark A

机构信息

Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States of America. Brian Kobylkevich and Anyesha Sarkar contributed equally to this work.

出版信息

Phys Biol. 2018 Mar 9;15(3):036005. doi: 10.1088/1478-3975/aaad91.

Abstract

Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.

摘要

弱外部电场(EFs)使细胞结构极化,并引导大多数迁移细胞(趋电运动)朝向阴极,这使其成为组织工程和治疗表皮伤口过程中的一种有用工具。然而,感知弱电场的生物物理机制仍然难以捉摸。我们通过用中性粘性聚合物降低细胞边界层中阴极导向的水流(电渗),重新研究了其机制。我们报告称,低分子量聚合物增加粘度会以浓度依赖的方式降低阴极迁移并促进阳极迁移。相比之下,高分子量聚合物增加粘度不会影响方向性。我们从聚合物之间的孔隙率和水力渗透率而非本体粘度的角度解释了这些矛盾的结果。这些结果首次提供了使用粘性剂控制趋电运动逆转的证据,并使我们更接近于识别假定的电场受体,这是一种基本的外向内信号受体,可控制不同细胞类型的细胞极性。

相似文献

5
Physical limits on galvanotaxis.电趋性的物理极限。
Phys Rev E. 2023 Dec;108(6-1):064411. doi: 10.1103/PhysRevE.108.064411.
8
Expression of integrins to control migration direction of electrotaxis.整合素表达控制电趋性迁移方向。
FASEB J. 2019 Aug;33(8):9131-9141. doi: 10.1096/fj.201802657R. Epub 2019 May 22.

引用本文的文献

1
Competing signaling pathways controls electrotaxis.相互竞争的信号通路控制电趋性。
iScience. 2025 Apr 2;28(5):112329. doi: 10.1016/j.isci.2025.112329. eCollection 2025 May 16.
2
Applied Electric Fields Polarize Initiation and Growth of Endothelial Sprouts.施加的电场使内皮细胞芽的起始和生长极化。
J Tissue Eng Regen Med. 2023 Dec 23;2023:6331148. doi: 10.1155/2023/6331148. eCollection 2023.
7
Membrane Ruffling is a Mechanosensor of Extracellular Fluid Viscosity.膜皱褶是细胞外液黏度的一种机械传感器。
Nat Phys. 2022 Sep;18(9):1112-1121. doi: 10.1038/s41567-022-01676-y. Epub 2022 Jul 25.
9
Anionic polymers amplify electrokinetic perfusion through extracellular matrices.阴离子聚合物通过细胞外基质增强电动灌注。
Front Bioeng Biotechnol. 2022 Sep 26;10:983317. doi: 10.3389/fbioe.2022.983317. eCollection 2022.

本文引用的文献

2
Challenges in the Treatment of Chronic Wounds.慢性伤口治疗中的挑战。
Adv Wound Care (New Rochelle). 2015 Sep 1;4(9):560-582. doi: 10.1089/wound.2015.0635.
3
Endogenous electric fields as guiding cue for cell migration.内源性电场作为细胞迁移的引导线索。
Front Physiol. 2015 May 13;6:143. doi: 10.3389/fphys.2015.00143. eCollection 2015.
10
Nanofluidics, from bulk to interfaces.从体相到界面的纳流控学。
Chem Soc Rev. 2010 Mar;39(3):1073-95. doi: 10.1039/b909366b. Epub 2009 Dec 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验