Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155, USA.
Annu Rev Biomed Eng. 2012;14:295-323. doi: 10.1146/annurev-bioeng-071811-150114.
Achieving control over cell behavior and pattern formation requires molecular-level understanding of regulatory mechanisms. Alongside transcriptional networks and biochemical gradients, there functions an important system of cellular communication and control: transmembrane voltage gradients (V(mem)). Bioelectrical signals encoded in spatiotemporal changes of V(mem) control cell proliferation, migration, and differentiation. Moreover, endogenous bioelectrical gradients serve as instructive cues mediating anatomical polarity and other organ-level aspects of morphogenesis. In the past decade, significant advances in molecular physiology have enabled the development of new genetic and biophysical tools for the investigation and functional manipulation of bioelectric cues. Recent data implicate V(mem) as a crucial epigenetic regulator of patterning events in embryogenesis, regeneration, and cancer. We review new conceptual and methodological developments in this fascinating field. Bioelectricity offers a novel way of quantitatively understanding regulation of growth and form in vivo, and it reveals tractable, powerful control points that will enable truly transformative applications in bioengineering, regenerative medicine, and synthetic biology.
实现对细胞行为和模式形成的控制需要对调控机制有分子水平的理解。除了转录网络和生化梯度外,还有一个重要的细胞通讯和控制系统在发挥作用:跨膜电压梯度(V(mem))。V(mem)的时空变化中编码的生物电信号控制着细胞的增殖、迁移和分化。此外,内源性生物电梯度作为指导线索,介导解剖极性和形态发生的其他器官水平方面。在过去的十年中,分子生理学的重大进展使人们能够开发新的遗传和生物物理工具,用于研究和功能操作生物电线索。最近的数据表明,V(mem)是胚胎发生、再生和癌症中模式形成事件的关键表观遗传调节剂。我们回顾了这一迷人领域的新概念和方法发展。生物电为在体内定量理解生长和形态的调控提供了一种新的途径,它揭示了可处理的、强大的控制点,这将使生物工程、再生医学和合成生物学领域实现真正的变革性应用。