Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02142, USA.
Nature. 2018 Mar 1;555(7694):103-106. doi: 10.1038/nature25744. Epub 2018 Feb 7.
Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca levels, and increases in cytosolic Ca resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca signalling. Further studies suggest that Ca signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.
体细胞干细胞通过整合各种环境线索不断调整自我更新和谱系承诺,以维持组织内稳态。尽管已经确定了许多化学和生物信号来调节干细胞行为,但干细胞是否可以直接感知体内的机械信号尚不清楚。在这里,我们表明机械应激通过拉伸激活离子通道 Piezo 调节成年果蝇中肠的干细胞分化。我们发现 Piezo 特异性表达在以前未被识别的肠内分泌前体细胞中,这些细胞增殖能力降低,注定要成为肠内分泌细胞。Piezo 活性的丧失会减少成年中肠中肠内分泌细胞的生成。此外,Piezo 在所有干细胞中的异位表达会触发细胞增殖和肠内分泌细胞分化。Piezo 突变体和过表达表型都可以通过细胞质 Ca 水平的操纵来挽救,并且细胞质 Ca 的增加类似于 Piezo 过表达表型,表明 Piezo 通过 Ca 信号传导发挥作用。进一步的研究表明,Ca 信号通过独立的途径促进干细胞增殖和分化。最后,Piezo 对于肠道扩张测定中干细胞的机械激活以及肠道压缩测定中对直接机械刺激的细胞质 Ca 增加都是必需的。因此,我们的研究表明,在果蝇中肠中存在一组特定的干细胞,它们可以通过 Piezo 直接感知机械信号。