Suppr超能文献

突触器件变化对硬件神经网络中模式识别准确性的影响

Impact of Synaptic Device Variations on Pattern Recognition Accuracy in a Hardware Neural Network.

作者信息

Kim Sungho, Lim Meehyun, Kim Yeamin, Kim Hee-Dong, Choi Sung-Jin

机构信息

Department of Electrical Engineering, Sejong University, Seoul, 05006, Korea.

Mechatronics R&D Center, Samsung Electronics, Gyonggi-do, 18448, Korea.

出版信息

Sci Rep. 2018 Feb 8;8(1):2638. doi: 10.1038/s41598-018-21057-x.

Abstract

Neuromorphic systems (hardware neural networks) derive inspiration from biological neural systems and are expected to be a computing breakthrough beyond conventional von Neumann architecture. Interestingly, in neuromorphic systems, the processing and storing of information can be performed simultaneously by modulating the connection strength of a synaptic device (i.e., synaptic weight). Previously investigated synaptic devices can emulate the functionality of biological synapses successfully by utilizing various nano-electronic phenomena; however, the impact of intrinsic synaptic device variability on the system performance has not yet been studied. Here, we perform a device-to-system level simulation of different synaptic device variation parameters in a designed neuromorphic system that has the potential for unsupervised learning and pattern recognition. The effects of variations in parameters such as the weight modulation nonlinearity (NL), the minimum-maximum weight (G and G ), and the weight update margin (ΔG) on the pattern recognition accuracy are analyzed quantitatively. These simulation results can provide guidelines for the continued design and optimization of a synaptic device for realizing a functional large-scale neuromorphic computing system.

摘要

神经形态系统(硬件神经网络)从生物神经系统中获取灵感,有望成为超越传统冯·诺依曼架构的计算突破。有趣的是,在神经形态系统中,信息的处理和存储可以通过调制突触器件的连接强度(即突触权重)同时进行。先前研究的突触器件能够利用各种纳米电子现象成功模拟生物突触的功能;然而,固有突触器件变异性对系统性能的影响尚未得到研究。在此,我们在一个具有无监督学习和模式识别潜力的设计神经形态系统中,对不同突触器件变化参数进行了从器件到系统级别的模拟。定量分析了诸如权重调制非线性(NL)、最小 - 最大权重(G 和 G )以及权重更新余量(ΔG)等参数变化对模式识别准确率的影响。这些模拟结果可为持续设计和优化用于实现功能性大规模神经形态计算系统的突触器件提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验