Suppr超能文献

一种使用α-InSe范德华铁电通道进行模式识别的人工突触晶体管。

An artificial synaptic transistor using an α-InSe van der Waals ferroelectric channel for pattern recognition.

作者信息

Mohta Neha, Rao Ankit, Remesh Nayana, Muralidharan R, Nath Digbijoy N

机构信息

Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science Bangalore 560012 India

出版信息

RSC Adv. 2021 Nov 17;11(58):36901-36912. doi: 10.1039/d1ra07728g. eCollection 2021 Nov 10.

Abstract

Despite being widely investigated for their memristive behavior, ferroelectrics are barely studied as channel materials in field-effect transistor (FET) configurations. In this work, we use multilayer α-InSe to realize a ferroelectric channel semiconductor FET, , FeS-FET, whose gate-triggered and polarization-induced resistive switching is then exploited to mimic an artificial synapse. The FeS-FET exhibits key signatures of a synapse such as excitatory and inhibitory postsynaptic current, potentiation/depression, and paired pulsed facilitation. Multiple stable conductance states obtained by tuning the device are then used as synaptic weights to demonstrate pattern recognition by invoking a hidden layer perceptron model. Detailed artificial neural network (ANN) simulations are performed on binary scale MNIST data digits, invoking 784 input (28 × 28 pixels) and 10 output neurons which are used in the training of 42 000 MNIST data digits. By updating the synaptic weights with conductance weight values on 18 000 digits, we achieved a successful recognition rate of 93% on the testing data. Introduction of 0.10 variance of noise pixels results in an accuracy of more than 70% showing the strong fault-tolerant nature of the conductance states. These synaptic functionalities, learning rules, and device to system-level simulation results based on α-InSe could facilitate the development of more complex neuromorphic hardware systems based on FeS-FETs.

摘要

尽管铁电体因其忆阻行为受到广泛研究,但在场效应晶体管(FET)配置中作为沟道材料的研究却很少。在这项工作中,我们使用多层α-InSe实现了一种铁电沟道半导体FET,即FeS-FET,然后利用其栅极触发和极化诱导的电阻开关来模拟人工突触。FeS-FET表现出突触的关键特征,如兴奋性和抑制性突触后电流、增强/抑制以及成对脉冲易化。通过调节器件获得的多个稳定电导状态随后被用作突触权重,以通过调用隐藏层感知器模型来演示模式识别。对二进制尺度的MNIST数据数字进行了详细的人工神经网络(ANN)模拟,调用了784个输入(28×28像素)和10个输出神经元,这些用于训练42000个MNIST数据数字。通过用18000个数字上的电导权重值更新突触权重,我们在测试数据上实现了93%的成功识别率。引入0.10的噪声像素方差导致准确率超过70%,这表明电导状态具有很强的容错性。这些基于α-InSe的突触功能、学习规则以及从器件到系统级的模拟结果,可能会促进基于FeS-FET的更复杂神经形态硬件系统的开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验