Suppr超能文献

基于深度学习算法的良性和恶性皮肤肿瘤临床图像分类。

Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm.

机构信息

I Dermatology Clinic, Seoul, Korea.

Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea.

出版信息

J Invest Dermatol. 2018 Jul;138(7):1529-1538. doi: 10.1016/j.jid.2018.01.028. Epub 2018 Feb 8.

Abstract

We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected.

摘要

我们测试了一种深度学习算法在 12 种皮肤疾病(基底细胞癌、鳞状细胞癌、上皮内癌、光化性角化病、脂溢性角化病、恶性黑色素瘤、黑色素细胞痣、雀斑、化脓性肉芽肿、血管瘤、皮肤纤维瘤和疣)的临床图像分类中的应用。该卷积神经网络(微软 ResNet-152 模型;微软亚洲研究院,北京,中国)使用来自 Asan 数据集、MED-NODE 数据集和图集站点图像(共 19398 张图像)的训练部分的图像进行了微调。训练好的模型用 Asan、Hallym 和 Edinburgh 数据集的测试部分进行了验证。在 Asan 数据集上,用于基底细胞癌、鳞状细胞癌、上皮内癌和黑色素瘤诊断的曲线下面积分别为 0.96 ± 0.01、0.83 ± 0.01、0.82 ± 0.02 和 0.96 ± 0.00。在 Edinburgh 数据集上,相应疾病的曲线下面积分别为 0.90 ± 0.01、0.91 ± 0.01、0.83 ± 0.01 和 0.88 ± 0.01。在 Hallym 数据集上,基底细胞癌诊断的敏感性为 87.1% ± 6.0%。该算法在 480 张 Asan 和 Edinburgh 图像上的测试性能与 16 位皮肤科医生相当。为了提高卷积神经网络的性能,应该收集更多具有更广泛年龄和种族范围的图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验