Jones Zack W, Leander Rachel, Quaranta Vito, Harris Leonard A, Tyson Darren R
Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, United States of America.
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States of America.
PLoS One. 2018 Feb 12;13(2):e0192087. doi: 10.1371/journal.pone.0192087. eCollection 2018.
Even among isogenic cells, the time to progress through the cell cycle, or the intermitotic time (IMT), is highly variable. This variability has been a topic of research for several decades and numerous mathematical models have been proposed to explain it. Previously, we developed a top-down, stochastic drift-diffusion+threshold (DDT) model of a cell cycle checkpoint and showed that it can accurately describe experimentally-derived IMT distributions [Leander R, Allen EJ, Garbett SP, Tyson DR, Quaranta V. Derivation and experimental comparison of cell-division probability densities. J. Theor. Biol. 2014;358:129-135]. Here, we use the DDT modeling approach for both descriptive and predictive data analysis. We develop a custom numerical method for the reliable maximum likelihood estimation of model parameters in the absence of a priori knowledge about the number of detectable checkpoints. We employ this method to fit different variants of the DDT model (with one, two, and three checkpoints) to IMT data from multiple cell lines under different growth conditions and drug treatments. We find that a two-checkpoint model best describes the data, consistent with the notion that the cell cycle can be broadly separated into two steps: the commitment to divide and the process of cell division. The model predicts one part of the cell cycle to be highly variable and growth factor sensitive while the other is less variable and relatively refractory to growth factor signaling. Using experimental data that separates IMT into G1 vs. S, G2, and M phases, we show that the model-predicted growth-factor-sensitive part of the cell cycle corresponds to a portion of G1, consistent with previous studies suggesting that the commitment step is the primary source of IMT variability. These results demonstrate that a simple stochastic model, with just a handful of parameters, can provide fundamental insights into the biological underpinnings of cell cycle progression.
即使在同基因细胞中,完成细胞周期的时间,即分裂间期时间(IMT),也具有高度的变异性。几十年来,这种变异性一直是研究的课题,并且已经提出了许多数学模型来解释它。此前,我们开发了一种自上而下的细胞周期检查点随机漂移扩散+阈值(DDT)模型,并表明它可以准确描述实验得出的IMT分布[利安德R,艾伦EJ,加贝特SP,泰森DR,夸兰塔V。细胞分裂概率密度的推导与实验比较。《理论生物学杂志》。2014年;358:129 - 135]。在此,我们将DDT建模方法用于描述性和预测性数据分析。我们开发了一种定制的数值方法,用于在缺乏关于可检测检查点数量的先验知识的情况下,对模型参数进行可靠的最大似然估计。我们使用这种方法将DDT模型的不同变体(具有一个、两个和三个检查点)拟合到来自不同生长条件和药物处理下的多个细胞系的IMT数据。我们发现双检查点模型最能描述这些数据,这与细胞周期可大致分为两个步骤的观点一致:分裂的决定和细胞分裂过程。该模型预测细胞周期的一部分具有高度变异性且对生长因子敏感,而另一部分变异性较小且对生长因子信号相对不敏感。使用将IMT分为G1与S、G2和M期的实验数据,我们表明模型预测的细胞周期中对生长因子敏感的部分对应于G1的一部分,这与先前的研究一致,即决定步骤是IMT变异性的主要来源。这些结果表明,一个简单的随机模型,只需几个参数,就能为细胞周期进程的生物学基础提供基本见解。