Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208.
Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208;
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):2252-2257. doi: 10.1073/pnas.1710936115. Epub 2018 Feb 12.
Accurate inference of regulatory networks from experimental data facilitates the rapid characterization and understanding of biological systems. High-throughput technologies can provide a wealth of time-series data to better interrogate the complex regulatory dynamics inherent to organisms, but many network inference strategies do not effectively use temporal information. We address this limitation by introducing Sliding Window Inference for Network Generation (SWING), a generalized framework that incorporates multivariate Granger causality to infer network structure from time-series data. SWING moves beyond existing Granger methods by generating windowed models that simultaneously evaluate multiple upstream regulators at several potential time delays. We demonstrate that SWING elucidates network structure with greater accuracy in both in silico and experimentally validated in vitro systems. We estimate the apparent time delays present in each system and demonstrate that SWING infers time-delayed, gene-gene interactions that are distinct from baseline methods. By providing a temporal framework to infer the underlying directed network topology, SWING generates testable hypotheses for gene-gene influences.
从实验数据中准确推断调控网络有助于快速描述和理解生物系统。高通量技术可以提供大量的时间序列数据,以便更好地探究生物体固有的复杂调控动态,但许多网络推断策略并没有有效地利用时间信息。我们通过引入滑动窗口网络生成推断(SWING)来解决这一局限性,这是一种通用框架,它结合了多元格兰杰因果关系,以便从时间序列数据中推断网络结构。SWING 通过生成同时在多个潜在时间延迟处评估多个上游调节剂的窗口模型,超越了现有的格兰杰方法。我们证明,SWING 在体内和体外实验验证系统中都能更准确地阐明网络结构。我们估计每个系统中存在的明显时间延迟,并证明 SWING 推断出的基因-基因相互作用与基线方法不同。通过提供一个推断潜在有向网络拓扑结构的时间框架,SWING 为基因-基因影响生成了可测试的假设。