Genetics, ETSIA, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain.
Mapping Consulting, 26 Rue St Antoine du T, 31000, Toulouse, France.
BMC Plant Biol. 2018 Feb 14;18(1):33. doi: 10.1186/s12870-018-1244-2.
Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock.
We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions.
The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to leaves. Storage protein deposition may be circadian regulated under field conditions but the strong environmental signals are not met under artificial growth conditions. Diel expression pattern in field conditions may result in better usage of energy for protein storage.
豇豆(Vignaunguiculata)是动物和人类营养蛋白质供应的重要来源。主要的储存球蛋白 VICILIN 和 LEGUMIN(LEG)是由包括 LEGA、LEGB、LEGJ 和 CVC(CONVICILIN)在内的几个基因合成的。目前的假设是,植物生物钟核心基因在广泛的物种中是保守的,而主要代谢在很大程度上受植物生物钟的控制。我们的目的是研究储存蛋白基因表达与生物钟之间的可能联系。
我们鉴定了豇豆生物钟核心基因 VunLHY、VunTOC1、VunGI 和 VunELF3、蛋白储存基因 VunLEG、VunLEGJ 和 VunCVC 的同源基因,以及用于 RT-PCR 的 9 个候选参考基因。伸长因子 1-A(ELF1A)是最合适的参考基因。时钟基因 VunELF3、VunGI、VunTOC1 和 VunLHY 在叶片中表现出节律性表达模式,具有典型的傍晚/夜间和上午/中午相位表达。昼夜节律模式并不完全稳健,只有 VungGI 和 VunELF3 在黑暗的自由运行条件下保留节律模式。在田间条件下,节律性和相位在早期豆荚和种子发育过程中明显消失,并在成熟豆荚中重新出现。成熟种子在受控生长室条件下表现出与叶片组织相似的 VunGI 节律性表达。比较发育阶段的时间窗口,我们发现与中间成熟豆荚相比,VunCVC 和 VunLEG 在成熟豆荚中夜间显著下调,而种子中的变化由于方差较大而不显著。田间条件下的节律性表达在生长室条件下丧失。
核心生物钟基因网络在豇豆叶片中是保守的,除了在生长室条件下 VunELF3 外,具有稳健的昼夜表达模式。与叶片相比,在豆荚和种子中似乎存在生物钟转录重编程。在田间条件下,储存蛋白沉积可能受到昼夜节律的调节,但在人工生长条件下,强烈的环境信号无法满足。田间条件下的昼夜表达模式可能导致更好地利用能量进行蛋白质储存。