Institut für Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg-Universität, Duesbergweg 10-14, 55128, Mainz, Germany.
Department of Chemistry, King Fahd University of Petroleum and Minerals, Kingdom of Saudi Arabia.
Chemistry. 2018 Jul 11;24(39):9703-9713. doi: 10.1002/chem.201800384. Epub 2018 Apr 26.
We describe elementary concepts, up-to-date developments, and perspectives of the emerging field of nanoparticle enzyme mimics (so-called "nanozymes") at the interface of chemistry, biology, materials, and nanotechnology. The design and synthesis of functional enzyme mimics is a long-standing goal of biomimetic chemistry. Metal complexes, polymers and engineered biomolecules capturing the structure of natural enzymes or their active centers have been made to achieve high rates and enhanced selectivities. Still, the design of new "artificial enzymes" that are not related to proteins but with capacity of production and stability at industrial level, remains a goal. Inorganic nanoparticles bear this potential. Although it seems counterintuitive to compare nanoparticles and natural enzymes because they appear very different they share many common features: nano-size, irregular shape, and rich surface chemistry. These features enable nanomaterials to mimic reactions of natural enzymes. Representative examples with biomedical and environmental applications are given.
我们在化学、生物学、材料学和纳米技术的交叉界面处,介绍了新兴的纳米颗粒酶模拟物(所谓的“纳米酶”)领域的基本概念、最新进展和展望。功能酶模拟物的设计和合成是仿生化学的长期目标。已经制造出金属配合物、聚合物和工程生物分子,以捕捉天然酶或其活性中心的结构,从而实现高反应速率和增强的选择性。然而,设计与蛋白质无关但具有工业生产能力和稳定性的新型“人工酶”仍然是一个目标。无机纳米颗粒具有这种潜力。尽管将纳米颗粒与天然酶进行比较似乎有违直觉,因为它们看起来非常不同,但它们具有许多共同的特征:纳米尺寸、不规则形状和丰富的表面化学。这些特征使纳米材料能够模拟天然酶的反应。给出了具有生物医学和环境应用的代表性示例。