Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia 4072, Australia; Queensland Node of Metabolomics Australia, The University of Queensland, St. Lucia 4072, Australia.
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia 4072, Australia; Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark; Queensland Node of Metabolomics Australia, The University of Queensland, St. Lucia 4072, Australia.
Curr Opin Biotechnol. 2018 Dec;54:33-40. doi: 10.1016/j.copbio.2018.01.027. Epub 2018 Feb 12.
The emergence of inexpensive, base-perfect genome editing is revolutionising biology. Modern industrial biotechnology exploits the advances in genome editing in combination with automation, analytics and data integration to build high-throughput automated strain engineering pipelines also known as biofoundries. Biofoundries replace the slow and inconsistent artisanal processes used to build microbial cell factories with an automated design-build-test cycle, considerably reducing the time needed to deliver commercially viable strains. Testing and hence learning remains relatively shallow, but recent advances in analytical chemistry promise to increase the depth of characterization possible. Analytics combined with models of cellular physiology in automated systems biology pipelines should enable deeper learning and hence a steeper pitch of the learning cycle. This review explores the progress, advances and remaining bottlenecks of analytical tools for high throughput strain engineering.
廉价、完美碱基的基因组编辑的出现正在彻底改变生物学。现代工业生物技术利用基因组编辑的进步,结合自动化、分析和数据集成,构建高通量自动化菌株工程管道,也称为生物工厂。生物工厂用自动化设计-构建-测试循环取代了用于构建微生物细胞工厂的缓慢且不一致的手工工艺,大大缩短了交付商业可行菌株所需的时间。测试,因此学习仍然相对较浅,但分析化学的最新进展有望增加可能的特征描述深度。自动化系统生物学管道中的分析与细胞生理学模型相结合,应该能够实现更深入的学习,从而使学习周期的坡度更陡。这篇综述探讨了高通量菌株工程分析工具的进展、进步和仍然存在的瓶颈。