Suppr超能文献

抗体靶向广泛表达的微生物多糖聚乙酰氨基葡萄糖的结构基础。

Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly--acetylglucosamine.

机构信息

From the School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia.

Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.

出版信息

J Biol Chem. 2018 Apr 6;293(14):5079-5089. doi: 10.1074/jbc.RA117.001170. Epub 2018 Feb 15.

Abstract

In response to the widespread emergence of antibiotic-resistant microbes, new therapeutic agents are required for many human pathogens. A non-mammalian polysaccharide, poly--acetyl-d-glucosamine (PNAG), is produced by bacteria, fungi, and protozoan parasites. Antibodies that bind to PNAG and its deacetylated form (dPNAG) exhibit promising and activities against many microbes. A human IgG1 mAb (F598) that binds both PNAG and dPNAG has opsonic and protective activities against multiple microbial pathogens and is undergoing preclinical and clinical assessments as a broad-spectrum antimicrobial therapy. Here, to understand how F598 targets PNAG, we determined crystal structures of the unliganded F598 antigen-binding fragment (Fab) and its complexes with -acetyl-d-glucosamine (GlcNAc) and a PNAG oligosaccharide. We found that F598 recognizes PNAG through a large groove-shaped binding site that traverses the entire light- and heavy-chain interface and accommodates at least five GlcNAc residues. The Fab-GlcNAc complex revealed a deep binding pocket in which the monosaccharide and a core GlcNAc of the oligosaccharide were almost identically positioned, suggesting an anchored binding mechanism of PNAG by F598. The Fab used in our structural analyses retained binding to PNAG on the surface of an antibiotic-resistant, biofilm-forming strain of Additionally, a model of intact F598 binding to two pentasaccharide epitopes indicates that the Fab arms can span at least 40 GlcNAc residues on an extended PNAG chain. Our findings unravel the structural basis for F598 binding to PNAG on microbial surfaces and biofilms.

摘要

针对抗生素耐药微生物的广泛出现,许多人类病原体都需要新的治疗剂。一种非哺乳动物多糖,聚乙酰-d-氨基葡萄糖(PNAG),由细菌、真菌和原生动物寄生虫产生。与 PNAG 及其脱乙酰化形式(dPNAG)结合的抗体对许多微生物表现出有前景的杀菌和保护活性。一种与人 IgG1 单克隆抗体(F598)结合的 PNAG 和 dPNAG 具有调理和保护活性,可抵抗多种微生物病原体,目前正在作为一种广谱抗菌疗法进行临床前和临床评估。在这里,为了了解 F598 如何靶向 PNAG,我们确定了未配体 F598 抗原结合片段(Fab)及其与 -乙酰-d-氨基葡萄糖(GlcNAc)和 PNAG 寡糖复合物的晶体结构。我们发现 F598 通过贯穿整个轻链和重链界面并容纳至少五个 GlcNAc 残基的大槽形结合位点识别 PNAG。Fab-GlcNAc 复合物揭示了一个深的结合口袋,其中单糖和寡糖的核心 GlcNAc 几乎处于相同位置,表明 F598 对 PNAG 的锚定结合机制。我们在结构分析中使用的 Fab 保留了对一种抗生素耐药、形成生物膜的菌株表面上的 PNAG 的结合。此外,完整 F598 结合两个五糖表位的模型表明,Fab 臂可以跨越至少 40 个延伸 PNAG 链上的 GlcNAc 残基。我们的研究结果揭示了 F598 结合微生物表面和生物膜上 PNAG 的结构基础。

相似文献

1
Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly--acetylglucosamine.
J Biol Chem. 2018 Apr 6;293(14):5079-5089. doi: 10.1074/jbc.RA117.001170. Epub 2018 Feb 15.
6
Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):E2209-18. doi: 10.1073/pnas.1303573110. Epub 2013 May 28.
9
Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3106-E3115. doi: 10.1073/pnas.1718341115. Epub 2018 Mar 19.
10
Protection against Escherichia coli infection by antibody to the Staphylococcus aureus poly-N-acetylglucosamine surface polysaccharide.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7528-33. doi: 10.1073/pnas.0700630104. Epub 2007 Apr 19.

引用本文的文献

1
Synergistic activity of dispersin B and benzoyl peroxide against Cutibacterium acnes/Staphylococcus epidermidis dual-species biofilms.
PLoS One. 2025 Mar 27;20(3):e0320662. doi: 10.1371/journal.pone.0320662. eCollection 2025.
2
Synthetic High-Throughput Microarrays of Peptidoglycan Fragments as a Novel Sero-Diagnostic Tool for Patient Antibody Profiling.
Angew Chem Int Ed Engl. 2025 Apr 25;64(18):e202420874. doi: 10.1002/anie.202420874. Epub 2025 Feb 28.
4
Treatment Approaches for Carbapenem-Resistant Acinetobacter baumannii Infections.
Drugs. 2025 Jan;85(1):21-40. doi: 10.1007/s40265-024-02104-6. Epub 2024 Nov 28.
6
Poly--(1→6)--acetyl-D-glucosamine mediates surface attachment, biofilm formation, and biocide resistance in .
Front Microbiol. 2024 May 1;15:1386017. doi: 10.3389/fmicb.2024.1386017. eCollection 2024.
7
Anti-Biofilm Strategies: A Focused Review on Innovative Approaches.
Microorganisms. 2024 Mar 22;12(4):639. doi: 10.3390/microorganisms12040639.
10
Outsmarting Pathogens with Antibody Engineering.
Annu Rev Chem Biomol Eng. 2023 Jun 8;14:217-241. doi: 10.1146/annurev-chembioeng-101121-084508. Epub 2023 Mar 14.

本文引用的文献

1
Editorial: Bacterial pathogens, antibiotics and antibiotic resistance.
FEMS Microbiol Rev. 2017 May 1;41(3):450-452. doi: 10.1093/femsre/fux016.
2
Structure of a protective epitope of group B type III capsular polysaccharide.
Proc Natl Acad Sci U S A. 2017 May 9;114(19):5017-5022. doi: 10.1073/pnas.1701885114. Epub 2017 Apr 24.
3
Efficacy of Antibody to PNAG Against Keratitis Caused by Fungal Pathogens.
Invest Ophthalmol Vis Sci. 2016 Dec 1;57(15):6797-6804. doi: 10.1167/iovs.16-20358.
4
Antibodies to watch in 2017.
MAbs. 2017 Feb/Mar;9(2):167-181. doi: 10.1080/19420862.2016.1269580. Epub 2016 Dec 14.
5
The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG.
Expert Rev Vaccines. 2016 Aug;15(8):1041-53. doi: 10.1586/14760584.2016.1159135. Epub 2016 Mar 16.
6
Privateer: software for the conformational validation of carbohydrate structures.
Nat Struct Mol Biol. 2015 Nov;22(11):833-4. doi: 10.1038/nsmb.3115.
7
Carbohydrate-Based Vaccines: An Overview.
Methods Mol Biol. 2015;1331:1-10. doi: 10.1007/978-1-4939-2874-3_1.
8
Antibody recognition of carbohydrate epitopes†.
Glycobiology. 2015 Sep;25(9):920-52. doi: 10.1093/glycob/cwv037. Epub 2015 Jun 1.
9
The global threat of antimicrobial resistance: science for intervention.
New Microbes New Infect. 2015 Apr 16;6:22-9. doi: 10.1016/j.nmni.2015.02.007. eCollection 2015 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验