Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):E2209-18. doi: 10.1073/pnas.1303573110. Epub 2013 May 28.
Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.
微生物荚膜抗原是有效的疫苗,但在化学和免疫学上具有多样性,这成为将其用于针对多种病原体的主要障碍。一种由四个蛋白质编码的β-(1→6)-连接的多-N-乙酰-d-葡糖胺 (PNAG) 表面荚膜,在金黄色葡萄球菌中称为细胞间黏附,在选定的革兰氏阴性细菌病原体中称为多葡聚糖。我们报告说,许多缺乏可识别的细胞间黏附或多葡聚糖基因座的微生物病原体也会产生 PNAG,包括革兰氏阳性、革兰氏阴性和真菌病原体,以及原生动物,例如阴道毛滴虫、伯氏疟原虫和疟原虫孢子和血期疟原虫。天然抗 PNAG 抗体在人类和动物中很常见,主要与高度乙酰化的 PNAG 糖型结合,但由于缺乏补体调理素的沉积,对感染没有保护作用。针对 PNAG 去乙酰化糖型的多克隆动物抗体和一种完全人源 IgG1 单克隆抗体都能结合天然和去乙酰化的糖型,介导补体依赖性调理或杀菌杀伤作用,并保护小鼠免受化脓性链球菌、肺炎链球菌、李斯特菌单核细胞增生症、脑膜炎奈瑟菌 B 群、白色念珠菌和伯氏疟原虫 ANKA 的局部和/或全身感染,以及在感染性结肠炎模型中预防结肠病理学。PNAG 也是淋病奈瑟菌和非典型流感嗜血杆菌的荚膜多糖,可保护细胞免受环境压力。针对 PNAG 的疫苗接种可能有助于对严重和多样化的原核和真核病原体产生免疫力,并且 PNAG 的保守产生表明它是微生物生物学的一个关键因素。