Department of Physics, University of Washington, Seattle, Washington 98195, United States.
Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.
J Phys Chem B. 2024 May 16;128(19):4590-4601. doi: 10.1021/acs.jpcb.3c07938. Epub 2024 May 3.
Cofilin, a key actin-binding protein, orchestrates the dynamics of the actomyosin network through its actin-severing activity and by promoting the recycling of actin monomers. Recent experiments suggest that cofilin forms functionally distinct oligomers via thiol post-translational modifications (PTMs) that promote actin nucleation and assembly. Despite these advances, the structural conformations of cofilin oligomers that modulate actin activity remain elusive because there are combinatorial ways to oxidize thiols in cysteines to form disulfide bonds rapidly. This study employs molecular dynamics simulations to investigate human cofilin 1 as a case study for exploring cofilin dimers via disulfide bond formation. Utilizing a biasing scheme in simulations, we focus on analyzing dimer conformations conducive to disulfide bond formation. Additionally, we explore potential PTMs arising from the examined conformational ensemble. Using the free energy profiling, our simulations unveil a range of probable cofilin dimer structures not represented in current Protein Data Bank entries. These candidate dimers are characterized by their distinct population distributions and relative free energies. Of particular note is a dimer featuring an interface between cysteines 139 and 147 residues, which demonstrates stable free energy characteristics and intriguingly symmetrical geometry. In contrast, the experimentally proposed dimer structure exhibits a less stable free energy profile. We also evaluate frustration quantification based on the energy landscape theory in the protein-protein interactions at the dimer interfaces. Notably, the 39-39 dimer configuration emerges as a promising candidate for forming cofilin tetramers, as substantiated by frustration analysis. Additionally, docking simulations with actin filaments further evaluate the stability of these cofilin dimer-actin complexes. Our findings thus offer a computational framework for understanding the role of thiol PTM of cofilin proteins in regulating oligomerization, and the subsequent cofilin-mediated actin dynamics in the actomyosin network.
丝切蛋白(Cofilin)是一种关键的肌动蛋白结合蛋白,通过其肌动蛋白切割活性和促进肌动蛋白单体的循环利用,来协调肌动球蛋白网络的动态变化。最近的实验表明,丝切蛋白通过巯基翻译后修饰(PTMs)形成功能上不同的寡聚体,从而促进肌动蛋白的成核和组装。尽管取得了这些进展,但调节肌动蛋白活性的丝切蛋白寡聚体的结构构象仍然难以捉摸,因为巯基在半胱氨酸中被氧化形成二硫键的方式有多种组合。本研究采用分子动力学模拟方法,以人源丝切蛋白 1 作为案例研究,探索通过形成二硫键来研究丝切蛋白二聚体。在模拟中使用偏置方案,我们专注于分析有利于形成二硫键的二聚体构象。此外,我们还探索了来自所研究构象组合的潜在 PTMs。使用自由能轮廓分析,我们的模拟揭示了一系列可能的丝切蛋白二聚体结构,这些结构在当前的蛋白质数据库条目(PDB)中没有表示。这些候选二聚体的特征是其具有不同的种群分布和相对自由能。值得注意的是,一种由残基 139 和 147 上的半胱氨酸组成的二聚体具有稳定的自由能特征和有趣的对称几何形状。相比之下,实验提出的二聚体结构表现出不稳定的自由能分布。我们还基于能量景观理论(energy landscape theory)在蛋白质-蛋白质相互作用的界面处评估了挫折量化。值得注意的是,39-39 二聚体构象作为形成丝切蛋白四聚体的有前途的候选者出现,这得到了挫折分析的支持。此外,与肌动蛋白丝的对接模拟进一步评估了这些丝切蛋白二聚体-肌动蛋白复合物的稳定性。因此,我们的研究结果为理解丝切蛋白蛋白的巯基 PTM 在调节寡聚化以及随后丝切蛋白介导的肌动球蛋白网络中的肌动蛋白动力学中的作用提供了计算框架。