Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
Angew Chem Int Ed Engl. 2018 May 4;57(19):5525-5528. doi: 10.1002/anie.201801424. Epub 2018 Apr 6.
Active pharmaceutical ingredients are either extracted from biological sources-where they are synthesized in complex, dynamic environments-or prepared in stepwise chemical syntheses by reacting pure reagents and catalysts under controlled conditions. A combination of these two approaches, where plant extracts containing reagents and catalysts are utilized in intensified chemical syntheses, creates expedient and sustainable processes. We illustrate this principle by reacting crude plant extract, oxygen, acid, and light to produce artemisinin, a key active pharmaceutical ingredient of the most powerful antimalarial drugs. The traditionally discarded extract of Artemisia annua plants contains dihydroartemisinic acid-the final biosynthetic precursor-as well as chlorophyll, which acts as a photosensitizer. Efficient irradiation with visible light in a continuous-flow setup produces artemisinin in high yield, and the artificial biosynthetic process outperforms syntheses with pure reagents.
活性药物成分要么从生物源中提取——在复杂、动态的环境中合成——要么通过在受控条件下用纯试剂和催化剂逐步进行化学合成来制备。这两种方法的结合,即利用含有试剂和催化剂的植物提取物进行强化化学合成,可以创造出便捷和可持续的工艺。我们通过用粗提植物提取物、氧气、酸和光来反应来生产青蒿素,这是最有效的抗疟药物的关键活性药物成分。传统上被丢弃的青蒿植物提取物含有二氢青蒿酸——最终的生物合成前体——以及叶绿素,它作为一种光敏剂。在连续流动装置中用可见光进行高效辐照可以高产率地生产青蒿素,并且人工生物合成过程优于使用纯试剂的合成。