Suppr超能文献

用于灵活的基于单次试验分析(包括线性混合模型)的组级脑电图处理管道

Group-Level EEG-Processing Pipeline for Flexible Single Trial-Based Analyses Including Linear Mixed Models.

作者信息

Frömer Romy, Maier Martin, Abdel Rahman Rasha

机构信息

Cognitive Linguistic and Psychological Science, Brown University, Providence, RI, United States.

Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Front Neurosci. 2018 Feb 6;12:48. doi: 10.3389/fnins.2018.00048. eCollection 2018.

Abstract

Here we present an application of an EEG processing pipeline customizing EEGLAB and FieldTrip functions, specifically optimized to flexibly analyze EEG data based on single trial information. The key component of our approach is to create a comprehensive 3-D EEG data structure including all trials and all participants maintaining the original order of recording. This allows straightforward access to subsets of the data based on any information available in a behavioral data structure matched with the EEG data (experimental conditions, but also performance indicators, such accuracy or RTs of single trials). In the present study we exploit this structure to compute linear mixed models (LMMs, using lmer in R) including random intercepts and slopes for items. This information can easily be read out from the matched behavioral data, whereas it might not be accessible in traditional ERP approaches without substantial effort. We further provide easily adaptable scripts for performing cluster-based permutation tests (as implemented in FieldTrip), as a more robust alternative to traditional omnibus ANOVAs. Our approach is particularly advantageous for data with parametric within-subject covariates (e.g., performance) and/or multiple complex stimuli (such as words, faces or objects) that vary in features affecting cognitive processes and ERPs (such as word frequency, salience or familiarity), which are sometimes hard to control experimentally or might themselves constitute variables of interest. The present dataset was recorded from 40 participants who performed a visual search task on previously unfamiliar objects, presented either visually intact or blurred. MATLAB as well as R scripts are provided that can be adapted to different datasets.

摘要

在此,我们展示了一种基于EEGLAB和FieldTrip功能定制的脑电图(EEG)处理流程的应用,该流程经过专门优化,可基于单次试验信息灵活分析EEG数据。我们方法的关键组成部分是创建一个全面的三维EEG数据结构,其中包括所有试验和所有参与者,并保持记录的原始顺序。这使得能够根据与EEG数据匹配的行为数据结构中可用的任何信息(实验条件,以及性能指标,如单次试验的准确性或反应时间)直接访问数据子集。在本研究中,我们利用这种结构来计算线性混合模型(LMMs,使用R中的lmer),包括项目的随机截距和斜率。此信息可轻松从匹配的行为数据中读出,而在传统的事件相关电位(ERP)方法中,如果不付出巨大努力则可能无法获取。我们还提供了易于改编的脚本,用于执行基于聚类的置换检验(如FieldTrip中所实现的),作为传统总体方差分析的更稳健替代方法。我们的方法对于具有参数化的受试者内协变量(例如性能)和/或多种复杂刺激(如单词、面孔或物体)的数据特别有利,这些刺激在影响认知过程和ERP的特征(如词频、显著性或熟悉度)方面存在差异,有时这些特征在实验中难以控制,或者本身可能构成感兴趣的变量。本数据集是从40名参与者那里记录的,他们对以前不熟悉的物体执行了视觉搜索任务,这些物体以视觉完整或模糊的形式呈现。我们提供了MATLAB以及R脚本,可根据不同数据集进行改编。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f977/5810264/6f0a3528c7bb/fnins-12-00048-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验