Suppr超能文献

用于稳健无漂移序列拼接的概率视觉与电磁数据融合:在胎儿镜检查中的应用

Probabilistic visual and electromagnetic data fusion for robust drift-free sequential mosaicking: application to fetoscopy.

作者信息

Tella-Amo Marcel, Peter Loic, Shakir Dzhoshkun I, Deprest Jan, Stoyanov Danail, Iglesias Juan Eugenio, Vercauteren Tom, Ourselin Sebastien

机构信息

University College London, Wellcome/EPSRC Center for Interventional and Surgical Sciences, London, United Kingdom.

KU Leuven, Center for Surgical Technologies, Faculty of Medicine, Leuven, Belgium.

出版信息

J Med Imaging (Bellingham). 2018 Apr;5(2):021217. doi: 10.1117/1.JMI.5.2.021217. Epub 2018 Feb 22.

Abstract

The most effective treatment for twin-to-twin transfusion syndrome is laser photocoagulation of the shared vascular anastomoses in the placenta. Vascular connections are extremely challenging to locate due to their caliber and the reduced field-of-view of the fetoscope. Therefore, mosaicking techniques are beneficial to expand the scene, facilitate navigation, and allow vessel photocoagulation decision-making. Local vision-based mosaicking algorithms inherently drift over time due to the use of pairwise transformations. We propose the use of an electromagnetic tracker (EMT) sensor mounted at the tip of the fetoscope to obtain camera pose measurements, which we incorporate into a probabilistic framework with frame-to-frame visual information to achieve globally consistent sequential mosaics. We parametrize the problem in terms of plane and camera poses constrained by EMT measurements to enforce global consistency while leveraging pairwise image relationships in a sequential fashion through the use of local bundle adjustment. We show that our approach is drift-free and performs similarly to state-of-the-art global alignment techniques like bundle adjustment albeit with much less computational burden. Additionally, we propose a version of bundle adjustment that uses EMT information. We demonstrate the robustness to EMT noise and loss of visual information and evaluate mosaics for synthetic, phantom-based and datasets.

摘要

双胎输血综合征最有效的治疗方法是对胎盘内共享的血管吻合处进行激光光凝治疗。由于血管的管径以及胎儿镜视野有限,血管连接的定位极具挑战性。因此,拼接技术有助于扩展视野、便于导航并进行血管光凝决策。基于局部视觉的拼接算法由于使用成对变换,随着时间推移会固有地产生漂移。我们建议在胎儿镜尖端安装一个电磁跟踪器(EMT)传感器来获取相机位姿测量值,并将其纳入一个概率框架,结合帧到帧的视觉信息,以实现全局一致的序列拼接。我们根据由EMT测量约束的平面和相机位姿对问题进行参数化,以确保全局一致性,同时通过使用局部光束平差以序列方式利用成对图像关系。我们表明,我们的方法无漂移,并且与束调整等最先进的全局对齐技术表现相似,尽管计算负担要小得多。此外,我们提出了一种使用EMT信息的光束平差版本。我们展示了对EMT噪声和视觉信息丢失的鲁棒性,并对合成、基于模型和真实数据集的拼接进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474e/5822039/71602a77895e/JMI-005-021217-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验