Sun Xiaolian, Cai Weibo, Chen Xiaoyuan
Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiang'an South Road, Xiamen 361102, China.
Acc Chem Res. 2015 Feb 17;48(2):286-94. doi: 10.1021/ar500362y. Epub 2015 Jan 30.
Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy. Although being fast and specific, only a few combinations of isotopes and nanoparticles have been explored. Since the applications of radiolabeled nanoparticles are based on the premise that the radioisotopes are stably attached to the nanomaterials, stability (colloidal and radiochemical) assessment of radiolabeled nanoparticles is also highlighted. Despite the fact that thousands of nanomaterials have been developed for clinical research, only very few have moved to humans. One major reason is the lack of understanding of the biological behavior of nanomaterials. We discuss specific examples of using PET imaging to monitor the in vivo fate of radiolabeled nanoparticles, emphasizing the importance of labeling strategies and caution in interpreting PET data. Design considerations for radiolabeled nanoplatforms for multimodal molecular imaging are also illustrated, with a focus on strategies to combine the strengths of different imaging modalities and to prolong the circulation time.
正电子发射断层扫描(PET)是一种放射性核素成像技术,在临床前和临床研究中发挥着重要作用。通过给予少量放射性示踪剂,PET成像可以提供其器官/组织靶向效率和药代动力学的非侵入性、高灵敏度和定量读出。已经设计了各种放射性示踪剂来靶向特定的分子事件。与抗体、蛋白质、肽和其他生物相关分子相比,纳米颗粒代表了分子成像探针设计的一个新前沿,能够在单个载体中连接不同的成像模式、靶向配体和治疗载荷。我们介绍了我们和其他人开发的放射性标记纳米颗粒平台。由于各种纳米颗粒和放射性同位素存在根本差异,大多数放射性标记方法都是逐案设计的。我们重点关注为给定类型的纳米颗粒选择合适同位素的一些一般规则,以及根据具体应用调整标记策略。我们将这些放射性标记方法分为四类:(1)通过配位化学使放射性金属离子与螯合剂发生络合反应;(2)通过强子射弹直接轰击纳米颗粒;(3)使用放射性和非放射性前体的混合物合成纳米颗粒;(4)无螯合剂的合成后放射性标记。方法1只要表面化学设计良好,一般适用于不同的纳米材料。然而,螯合剂的添加引发了对纳米材料物理化学性质可能变化以及放射性金属脱离的担忧。方法2和3具有更高的放射化学稳定性。然而,其应用受到质子束(方法2)可能对纳米组分造成的损害以及苛刻的合成条件(方法3)的限制。方法4仍处于起步阶段。尽管快速且具有特异性,但仅探索了少数同位素和纳米颗粒的组合。由于放射性标记纳米颗粒的应用基于放射性同位素稳定附着于纳米材料这一前提,因此放射性标记纳米颗粒的稳定性(胶体和放射化学)评估也受到重视。尽管已经开发了数千种用于临床研究的纳米材料,但只有极少数进入了人体试验。一个主要原因是对纳米材料的生物学行为缺乏了解。我们讨论了使用PET成像监测放射性标记纳米颗粒体内命运的具体例子,强调了标记策略的重要性以及在解释PET数据时要谨慎。还阐述了用于多模态分子成像的放射性标记纳米平台的设计考虑因素,重点是结合不同成像模式优势和延长循环时间的策略。