Department of Nuclear Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
Nano Lett. 2018 Apr 11;18(4):2492-2497. doi: 10.1021/acs.nanolett.8b00068. Epub 2018 Mar 14.
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. Here, we report in situ experiments to stretch pure aluminum nanotips under O gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can match the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass-glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.
有效防止环境恶化依赖于氧化物作为扩散阻挡层的完整性。理想情况下,在发生变形时,钝化层可以快速自行修复其破损处。虽然研究表明,天然氧化铝可能具有这种特性,但尚未得到实验证实,因为直接观察氧化铝在空气环境中的变形及其在室温下的初始形成具有挑战性。在这里,我们报告了在透射电子显微镜(TEM)中在 O 气体环境下对纯铝纳米尖端进行原位拉伸的实验。我们发现,氧化铝确实像液体一样变形,并且可以在中等应变速率下与 Al 相匹配而不会出现任何裂纹/剥落。在更高的应变速率下,我们暴露出新鲜的金属表面,并以原子分辨率观察到氧化铝的自修复过程。与传统的薄膜生长或纳米玻璃固结过程不同,我们观察到新的氧化物岛无缝融合,而不会形成任何玻璃-玻璃界面或表面凹槽,这表明与体相比,表面的玻璃动力学大大加速。