Suppr超能文献

结合高通量表型和基因组信息提高小麦育种中的预测和选择准确性。

Combining High-Throughput Phenotyping and Genomic Information to Increase Prediction and Selection Accuracy in Wheat Breeding.

出版信息

Plant Genome. 2018 Mar;11(1). doi: 10.3835/plantgenome2017.05.0043.

Abstract

Genomics and phenomics have promised to revolutionize the field of plant breeding. The integration of these two fields has just begun and is being driven through big data by advances in next-generation sequencing and developments of field-based high-throughput phenotyping (HTP) platforms. Each year the International Maize and Wheat Improvement Center (CIMMYT) evaluates tens-of-thousands of advanced lines for grain yield across multiple environments. To evaluate how CIMMYT may utilize dynamic HTP data for genomic selection (GS), we evaluated 1170 of these advanced lines in two environments, drought (2014, 2015) and heat (2015). A portable phenotyping system called 'Phenocart' was used to measure normalized difference vegetation index and canopy temperature simultaneously while tagging each data point with precise GPS coordinates. For genomic profiling, genotyping-by-sequencing (GBS) was used for marker discovery and genotyping. Several GS models were evaluated utilizing the 2254 GBS markers along with over 1.1 million phenotypic observations. The physiological measurements collected by HTP, whether used as a response in multivariate models or as a covariate in univariate models, resulted in a range of 33% below to 7% above the standard univariate model. Continued advances in yield prediction models as well as increasing data generating capabilities for both genomic and phenomic data will make these selection strategies tractable for plant breeders to implement increasing the rate of genetic gain.

摘要

基因组学和表型组学有望彻底改变植物育种领域。这两个领域的融合才刚刚开始,并通过下一代测序技术的进步和基于田间的高通量表型(HTP)平台的发展,通过大数据来推动。国际玉米和小麦改良中心(CIMMYT)每年都会评估数万种在多个环境下具有高谷物产量的优良品系。为了评估 CIMMYT 如何利用动态 HTP 数据进行基因组选择(GS),我们在两个环境(干旱 2014 年和 2015 年,以及高温 2015 年)中评估了其中的 1170 种优良品系。一个名为“Phenocart”的便携式表型系统用于同时测量归一化差异植被指数和冠层温度,同时为每个数据点标记精确的 GPS 坐标。用于基因组分析的基因型测序(GBS)用于发现标记和基因分型。利用 2254 个 GBS 标记和超过 110 万个表型观测值,评估了几种 GS 模型。通过 HTP 收集的生理测量值,无论是作为多元模型的响应变量,还是作为单变量模型的协变量,都导致标准单变量模型的预测值下降 33%至增加 7%。产量预测模型的持续改进以及基因组和表型数据的生成能力的提高,将使这些选择策略更易于被植物育种者实施,从而提高遗传增益的速度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验