Gostinčar Cene, Gunde-Cimerman Nina
Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
Genes (Basel). 2018 Mar 6;9(3):143. doi: 10.3390/genes9030143.
Exposure of microorganisms to stress, including to high concentrations of salt, can lead to increased production of reactive oxygen species in the cell. To limit the resulting damage, cells have evolved a variety of antioxidant defenses. The role of these defenses in halotolerance has been proposed before. Whole genome sequencing for some of the most halotolerant and halophilic fungal species has enabled us to investigate the possible links between oxidative and salt stress tolerance on the genomic level. We identified genes involved in oxidative stress response in the halophilic basidiomycete , and halotolerant ascomycetous black yeasts and , and compared them to genes from 16 other fungi, both asco- and basidiomycetes. According to our results, can survive salinities detrimental to most other organisms with only a moderate number of oxidative stress response genes. In other investigated species, however, the maximum tolerated salinity correlated with the number of genes encoding three major enzymes of the cellular oxidative stress response: superoxide dismutases, catalases, and peroxiredoxins. This observation supports the hypothetical link between the antioxidant capacity of cells and their halotolerance.
微生物暴露于应激环境,包括高浓度盐环境中,会导致细胞内活性氧物质的产生增加。为了限制由此产生的损伤,细胞进化出了多种抗氧化防御机制。之前已经有人提出过这些防御机制在耐盐性方面的作用。对一些最耐盐和嗜盐的真菌物种进行全基因组测序,使我们能够在基因组水平上研究氧化应激耐受性和盐胁迫耐受性之间的可能联系。我们鉴定了嗜盐担子菌、耐盐子囊菌黑酵母中的氧化应激反应相关基因,并将它们与其他16种真菌(包括子囊菌和担子菌)的基因进行了比较。根据我们的结果,[具体物种名称]仅凭借数量适中的氧化应激反应基因就能在对大多数其他生物有害的盐度环境中存活。然而,在其他被研究的物种中,最大耐受盐度与编码细胞氧化应激反应三种主要酶的基因数量相关:超氧化物歧化酶、过氧化氢酶和过氧化物酶。这一观察结果支持了细胞抗氧化能力与其耐盐性之间的假设联系。