Iannaccone Giuseppe, Bonaccorso Francesco, Colombo Luigi, Fiori Gianluca
Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa, Italy.
Istituto Italiano di tecnologia, Graphene Labs, Genova, Italy.
Nat Nanotechnol. 2018 Mar;13(3):183-191. doi: 10.1038/s41565-018-0082-6. Epub 2018 Mar 6.
Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.
量子工程需要对电子器件进行逐个原子的设计和制造。这种将材料科学与器件工程相结合的创新技术,得益于二维材料垂直和横向异质结构制造方面的最新进展,以及通过计算纳米技术对该技术潜力的评估。但是,我们距离实际实现下一代原子级超薄晶体管还有多远呢?在这篇观点文章中,我们以硅技术及其在潜在性能和可制造性方面可预见的发展为基准,分析了使用二维材料异质结构的量子工程晶体管的前景和挑战。从性能角度来看,基于横向异质结构的晶体管是最有前途的选择,尽管异质结构的形成和控制仍处于技术开发的初始阶段。