School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
Biochim Biophys Acta Biomembr. 2018 Jun;1860(6):1282-1291. doi: 10.1016/j.bbamem.2018.03.002. Epub 2018 Mar 6.
The Na,K-ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na and K electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state P and H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations.
Na,K-ATPase 存在于所有动物细胞的质膜中,在维持膜两侧 Na 和 K 的电化学梯度方面起着至关重要的作用。最近的研究表明,该蛋白催化α亚基的 N 端参与与周围膜的静电相互作用,这种相互作用控制着蛋白的构象平衡。然而,由于目前还无法在任何 X 射线晶体结构中解析 N 端,因此关于这种相互作用的信息非常有限。在利用聚赖氨酸作为富含赖氨酸的 N 端的模型,并使用具有明确定义组成的脂质体进行的测量中,我们确定了这种相互作用最有可能源自 N 端的带正电荷的赖氨酸残基与周围膜中带负电荷的磷脂(特别是磷脂酰丝氨酸)头部基团之间。此外,为了分离 N 端可能参与膜结合的片段,我们通过化学合成了具有不同长度的 N 端片段。根据 RH421 的紫外/可见吸收测量结果以及使用这些 N 端片段的固态 P 和 H NMR 的结果和 MD 模拟的结果,似乎膜相互作用来自于 N 端的保守 LKKE 模体之前的赖氨酸残基。MD 模拟表明,不同酶构象之间的相互作用强度有很大差异。