Suppr超能文献

盲态学习的准确神经指标。

Blindfold learning of an accurate neural metric.

机构信息

Laboratoire de physique statistique, Centre National de la Recherche Scientifique, Sorbonne University, University Paris-Diderot, École normale supérieure, PSL University, 75005 Paris, France.

Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne University, 75012 Paris, France.

出版信息

Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3267-3272. doi: 10.1073/pnas.1718710115. Epub 2018 Mar 12.

Abstract

The brain has no direct access to physical stimuli but only to the spiking activity evoked in sensory organs. It is unclear how the brain can learn representations of the stimuli based on those noisy, correlated responses alone. Here we show how to build an accurate distance map of responses solely from the structure of the population activity of retinal ganglion cells. We introduce the Temporal Restricted Boltzmann Machine to learn the spatiotemporal structure of the population activity and use this model to define a distance between spike trains. We show that this metric outperforms existing neural distances at discriminating pairs of stimuli that are barely distinguishable. The proposed method provides a generic and biologically plausible way to learn to associate similar stimuli based on their spiking responses, without any other knowledge of these stimuli.

摘要

大脑无法直接接触物理刺激,只能接触到感官器官中诱发的尖峰活动。目前尚不清楚大脑如何仅基于这些嘈杂的相关反应来学习刺激的表示。在这里,我们展示了如何仅从视网膜神经节细胞的群体活动结构构建准确的响应距离图。我们引入了时间受限玻尔兹曼机来学习群体活动的时空结构,并使用该模型定义尖峰序列之间的距离。我们表明,与几乎无法区分的刺激对相比,该度量标准在辨别方面优于现有的神经距离。所提出的方法为基于尖峰反应来学习关联相似刺激提供了一种通用且合理的生物学方法,而无需这些刺激的任何其他知识。

相似文献

1
Blindfold learning of an accurate neural metric.盲态学习的准确神经指标。
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3267-3272. doi: 10.1073/pnas.1718710115. Epub 2018 Mar 12.
2
A Spiking Neural Network System for Robust Sequence Recognition.一种用于稳健序列识别的脉冲神经网络系统。
IEEE Trans Neural Netw Learn Syst. 2016 Mar;27(3):621-35. doi: 10.1109/TNNLS.2015.2416771. Epub 2015 Apr 14.
4
Learning precisely timed spikes.学习精确时间的尖峰。
Neuron. 2014 May 21;82(4):925-38. doi: 10.1016/j.neuron.2014.03.026. Epub 2014 Apr 24.
5
Neural decoding with kernel-based metric learning.基于核度量学习的神经解码
Neural Comput. 2014 Jun;26(6):1080-107. doi: 10.1162/NECO_a_00591. Epub 2014 Mar 31.
8
Supervised learning with decision margins in pools of spiking neurons.在脉冲神经元群体中利用决策边界进行监督学习。
J Comput Neurosci. 2014 Oct;37(2):333-44. doi: 10.1007/s10827-014-0505-9. Epub 2014 May 28.
9
Learning probabilistic neural representations with randomly connected circuits.用随机连接的电路学习概率神经网络表示。
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):25066-25073. doi: 10.1073/pnas.1912804117. Epub 2020 Sep 18.

引用本文的文献

本文引用的文献

3
Error-Robust Modes of the Retinal Population Code.视网膜群体编码的抗错误模式。
PLoS Comput Biol. 2016 Nov 17;12(11):e1005148. doi: 10.1371/journal.pcbi.1005148. eCollection 2016 Nov.
6
High Accuracy Decoding of Dynamical Motion from a Large Retinal Population.从大量视网膜神经元群体中高精度解码动态运动
PLoS Comput Biol. 2015 Jul 1;11(7):e1004304. doi: 10.1371/journal.pcbi.1004304. eCollection 2015 Jul.
10
Modeling higher-order correlations within cortical microcolumns.在皮层微柱内建模高阶相关性。
PLoS Comput Biol. 2014 Jul 3;10(7):e1003684. doi: 10.1371/journal.pcbi.1003684. eCollection 2014 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验