Crisanti Andrea, De Martino Andrea, Fiorentino Jonathan
Dipartimento di Fisica, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Rome, Italy.
Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 2, 00185 Rome, Italy.
Phys Rev E. 2018 Feb;97(2-1):022407. doi: 10.1103/PhysRevE.97.022407.
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N, (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.
遗传调控回路普遍应对各种噪声源,这些噪声限制了它们协调输入和输出信号的能力。在许多情况下,最佳调控性能可被认为对应于变量和参数的配置,这些配置能使输入和输出之间的互信息最大化。自21世纪中叶以来,在一些生物学相关案例中,此类最优情况已得到很好的表征。在这里,我们使用统计场论方法来计算仅通过在一组调控基序中调整输入变量可实现的最大互信息(“容量”)的统计量,其中单个控制器调控N个目标。假设(i)N足够大,(ii)淬灭随机动力学参数,以及(iii)影响输入 - 输出通道的噪声较小,我们能够准确地重现关于平均容量和整个分布的数值模拟。我们的结果为具有异质动力学参数的调控系统中有效性的固有变异性提供了见解。