文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在玫烟色棒束孢废弃菌丝体提取物中合成的生物纳米银 - 作为白念珠菌形态发生、膜脂组和生物膜的调节剂。

Biogenic nanosilver synthesized in Metarhizium robertsii waste mycelium extract - As a modulator of Candida albicans morphogenesis, membrane lipidome and biofilm.

机构信息

Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.

Laboratory of Microbiological and Technical Services, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.

出版信息

PLoS One. 2018 Mar 19;13(3):e0194254. doi: 10.1371/journal.pone.0194254. eCollection 2018.


DOI:10.1371/journal.pone.0194254
PMID:29554119
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5858827/
Abstract

Due to low efficacy of classic antimicrobial drugs, finding new active preparations attracts much attention. In this study an innovative, cost-effective and environmentally friendly method was applied to produce silver nanoparticles (AgNPs) using filamentous fungi Metarhizium robertsii biomass waste. It was shown that these NPs possess prominent antifungal effects against C. albicans, C. glabrata and C. parapsilosis reference strains. Further detailed studies were performed on C. albicans ATCC 90028. AgNPs kill curve (CFU method and esterase-mediated reduction of fluorescein diacetate); fractionally inhibitory concentration index (FICI) with fluconazole (FLC); effect on fungal cell membrane permeability (propidium iodide (PI) staining), membrane lipids profile (HPLC-MS), yeast morphotypes and intracellular reactive oxygen species level (H2DCFDA probe) were investigated. Anti-adhesive and anti-biofilm properties of AgNPs (alone and in combination with FLC) were also tested. Biosafety of AgNPs use was assessed in vitro in cytotoxicity tests against L929 fibroblasts, pulmonary epithelial A549 cell line, and red blood cells. Significant reduction in the viability of yeast cells treated with AgNPs was shown within 6 h. The proportion of C. albicans PI-positive cells increased in a dose and time-dependent manner. Changes in the qualitative and quantitative profile of cell membrane lipids, including significant decline in the quantity of most phospholipid species containing C18:2 and an increase in the amount of phospholipids containing C18:1 acyl species were observed after yeast exposure to AgNPs. CLSM images showed an enhancement in ROS intracellular accumulation in C. albicans treated with biogenic nanosilver. C. albicans transformation from yeast to hyphal forms was also reduced. AgNPs decreased adhesion of yeast to abiotic surfaces, as well as acted synergistically with FLC against sessile population. At fungicidal and fungistatic concentrations, they were non-toxic to mammalian cells. Obtained results confirm suitability of our "green synthesis" method to produce AgNPs with therapeutic potential against fungal infections.

摘要

由于经典抗菌药物疗效低,寻找新的有效制剂引起了广泛关注。在这项研究中,应用了一种创新的、具有成本效益的和环保的方法,使用丝状真菌玫烟色棒束孢(Metarhizium robertsii)生物量废料来生产银纳米粒子(AgNPs)。结果表明,这些 NPs 对白色念珠菌、近平滑念珠菌和光滑念珠菌参考菌株具有显著的抗真菌作用。进一步对白色念珠菌 ATCC 90028 进行了详细研究。通过 CFU 法和荧光素二乙酸酯介导的还原酶法测定了 AgNPs 的杀菌曲线;用氟康唑(FLC)测定了部分抑菌浓度指数(FICI);研究了 AgNPs 对真菌细胞膜通透性(碘化丙啶(PI)染色)、膜脂谱(HPLC-MS)、酵母形态和细胞内活性氧水平(H2DCFDA 探针)的影响。还测试了 AgNPs(单独使用和与 FLC 联合使用)的抗黏附性和抗生物膜特性。通过体外细胞毒性试验,评估了 AgNPs 在 L929 成纤维细胞、肺上皮 A549 细胞系和红细胞中的生物安全性。结果显示,AgNPs 处理的酵母细胞在 6 小时内活力显著降低。PI 阳性细胞的比例呈剂量和时间依赖性增加。细胞膜脂质的定性和定量谱发生变化,包括大多数含有 C18:2 的磷脂种类的数量显著下降,以及含有 C18:1 酰基种类的磷脂数量增加,在酵母暴露于 AgNPs 后观察到。CLSM 图像显示,生物合成纳米银处理的白色念珠菌细胞内 ROS 积累增加。白色念珠菌从酵母到菌丝形式的转化也减少了。AgNPs 降低了酵母对非生物表面的黏附,并且与 FLC 联合对静止群体具有协同作用。在杀菌和抑菌浓度下,它们对哺乳动物细胞无毒。实验结果证实,我们的“绿色合成”方法适合生产具有抗真菌感染治疗潜力的 AgNPs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/9a19f60d75d7/pone.0194254.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/04cea9c5da69/pone.0194254.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/d006573d1452/pone.0194254.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/d8da00f3a809/pone.0194254.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/515ce2d2abec/pone.0194254.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/7e4c408fc8ef/pone.0194254.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/35c14d3f3775/pone.0194254.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/73d4272a392d/pone.0194254.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/eb8ad54fd3e4/pone.0194254.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/9a19f60d75d7/pone.0194254.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/04cea9c5da69/pone.0194254.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/d006573d1452/pone.0194254.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/d8da00f3a809/pone.0194254.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/515ce2d2abec/pone.0194254.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/7e4c408fc8ef/pone.0194254.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/35c14d3f3775/pone.0194254.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/73d4272a392d/pone.0194254.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/eb8ad54fd3e4/pone.0194254.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069e/5858827/9a19f60d75d7/pone.0194254.g009.jpg

相似文献

[1]
Biogenic nanosilver synthesized in Metarhizium robertsii waste mycelium extract - As a modulator of Candida albicans morphogenesis, membrane lipidome and biofilm.

PLoS One. 2018-3-19

[2]
Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans.

Med Mycol. 2015-6-19

[3]
Mode of action and anti-Candida activity of Artemisia annua mediated-synthesized silver nanoparticles.

J Mycol Med. 2019-7-26

[4]
Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen ().

Int J Nanomedicine. 2018-5-3

[5]
Acinetobacter sp. mediated synthesis of AgNPs, its optimization, characterization and synergistic antifungal activity against C. albicans.

J Appl Microbiol. 2019-6-7

[6]
Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles.

PLoS One. 2014-10-7

[7]
Silver nanoparticles offer a synergistic effect with fluconazole against fluconazole-resistant Candida albicans by abrogating drug efflux pumps and increasing endogenous ROS.

Infect Genet Evol. 2021-9

[8]
Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain.

World J Microbiol Biotechnol. 2018-1-5

[9]
The antifungal agent of silver nanoparticles activated by diode laser as light source to reduce C. albicans biofilms: an in vitro study.

Lasers Med Sci. 2018-11-9

[10]
Activity of poly(methacrylic acid)-silver nanoparticles on fluconazole-resistant Candida albicans strains: Synergistic and cytotoxic effects.

J Appl Microbiol. 2022-6

引用本文的文献

[1]
Mycogenic Silver Nanoparticles: Promising Antimicrobials with Fungistatic Properties.

Int J Mol Sci. 2025-7-10

[2]
Investigation of antifungal and antibiofilm activities of green synthesized silver nanoparticles against Candida glabrata.

Biometals. 2025-4-4

[3]
Antimicrobial and antiproliferative activity of biosynthesized manganese nanocomposite with amide derivative originated by endophytic Aspergillus terreus.

Microb Cell Fact. 2025-2-4

[4]
Resveratrol-coated gold nanorods produced by green synthesis with activity against .

Virulence. 2024-12

[5]
Antifungal and antibiofilm effects of probiotic , zinc nanoparticles, and zinc nanocomposites against from Nile tilapia (), water and humans.

Front Cell Infect Microbiol. 2024

[6]
Impact of Nitric Oxide-Release Kinetics on Antifungal Activity.

J Fungi (Basel). 2024-4-24

[7]
Metal Nanomaterials and Hydrolytic Enzyme-Based Formulations for Improved Antifungal Activity.

Int J Mol Sci. 2023-7-12

[8]
3-Hydroxy coumarin demonstrates anti-biofilm and anti-hyphal efficacy against Candida albicans via inhibition of cell-adhesion, morphogenesis, and virulent genes regulation.

Sci Rep. 2023-7-19

[9]
Exploring the biological application of derived silver nanoparticles: physicochemical, antifungal, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic performance.

Heliyon. 2023-6-1

[10]
Metal Nanoparticles to Combat Infections: An Update.

Microorganisms. 2023-1-5

本文引用的文献

[1]
Low Concentrations of a Silver-Based Nanocomposite to Manage Bacterial Spot of Tomato in the Greenhouse.

Plant Dis. 2016-7

[2]
Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties.

Nanomaterials (Basel). 2017-6-6

[3]
Hyaluronic Acid-Templated Ag Nanoparticles/Graphene Oxide Composites for Synergistic Therapy of Bacteria Infection.

ACS Appl Mater Interfaces. 2017-6-5

[4]
The nanoparticle protein corona formed in human blood or human blood fractions.

PLoS One. 2017-4-17

[5]
DNA/Ag Nanoparticles as Antibacterial Agents against Gram-Negative Bacteria.

Nanomaterials (Basel). 2015-3-3

[6]
Metallic Nanostructures Based on DNA Nanoshapes.

Nanomaterials (Basel). 2016-8-10

[7]
The antimicrobial activity of nanoparticles: present situation and prospects for the future.

Int J Nanomedicine. 2017-2-14

[8]
Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis.

AMB Express. 2017-12

[9]
The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles.

Int J Mol Sci. 2017-1-10

[10]
The Effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities.

Enzyme Microb Technol. 2017-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索