文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于软骨和软骨下骨界面再生的生物活性支架。

Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface.

机构信息

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences. Shanghai 200050,P.R.China.

University of Chinese Academy of Sciences, Beijing 100049, P.R.China.

出版信息

Theranostics. 2018 Feb 15;8(7):1940-1955. doi: 10.7150/thno.23674. eCollection 2018.


DOI:10.7150/thno.23674
PMID:29556366
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5858510/
Abstract

The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr(PO)SiO (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured . The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated . SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration.

摘要

骨关节炎(OA)引起的软骨损伤总是延伸到软骨下骨。同时再生软骨和软骨下骨两种组织非常重要。3D 打印 Sr(PO)SiO(SPS)生物活性陶瓷支架可能实现再生软骨和软骨下骨的目的。我们假设 SPS 支架释放的锶(Sr)和硅(Si)离子在骨软骨缺损重建中发挥关键作用。采用 3D 打印方法制备 SPS 生物活性陶瓷支架。使用 SEM 和 ICPAES 研究 SPS 支架的物理化学性质。测量 SPS 生物活性陶瓷对兔软骨细胞增殖和成熟的刺激作用。研究 SPS 支架对软骨和软骨下骨再生的刺激作用。SPS 支架显著刺激软骨细胞增殖,SPS 提取物明显增强软骨细胞的成熟,并防止 OA 软骨细胞发生。SPS 支架明显促进骨软骨缺损的再生。软骨和软骨下骨之间的复杂界面微观结构明显重建。潜在的机制可能与 Sr 和 Si 离子通过激活 HIF 途径刺激软骨再生以及通过激活 Wnt 途径促进软骨下骨重建有关,还通过诱导自噬和抑制 Hedgehog 途径来保护 OA 软骨细胞。我们的研究结果表明,SPS 支架有助于骨软骨缺损的重建,并很好地重建了软骨和软骨下骨之间的复杂界面,这代表了骨软骨缺损再生的一种有前途的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/fe1b35c96f2d/thnov08p1940g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/a928813457dd/thnov08p1940g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/61705a78f5bb/thnov08p1940g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/b54ef52906b0/thnov08p1940g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/9b1c08aec8e2/thnov08p1940g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/605ec77d5076/thnov08p1940g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/1030cfe3cfad/thnov08p1940g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/17cf30b28109/thnov08p1940g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/fe9a5b2fde83/thnov08p1940g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/3f7f1cf7c57d/thnov08p1940g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/0fcb938c91b9/thnov08p1940g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/fe1b35c96f2d/thnov08p1940g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/a928813457dd/thnov08p1940g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/61705a78f5bb/thnov08p1940g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/b54ef52906b0/thnov08p1940g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/9b1c08aec8e2/thnov08p1940g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/605ec77d5076/thnov08p1940g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/1030cfe3cfad/thnov08p1940g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/17cf30b28109/thnov08p1940g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/fe9a5b2fde83/thnov08p1940g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/3f7f1cf7c57d/thnov08p1940g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/0fcb938c91b9/thnov08p1940g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/5858510/fe1b35c96f2d/thnov08p1940g011.jpg

相似文献

[1]
Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface.

Theranostics. 2018-2-15

[2]
3D printing of Mo-containing scaffolds with activated anabolic responses and bi-lineage bioactivities.

Theranostics. 2018-7-30

[3]
Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface.

Theranostics. 2019-8-14

[4]
3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction.

Biomaterials. 2018-4-4

[5]
Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair.

Adv Healthc Mater. 2024-8

[6]
3D-Printed Composite Bioceramic Scaffolds for Bone and Cartilage Integrated Regeneration.

ACS Omega. 2023-10-2

[7]
Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration.

Theranostics. 2019-4-13

[8]
[Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014-3

[9]
3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.

Acta Biomater. 2020-9-1

[10]
3D Printing of Cobalt-Incorporated Chloroapatite Bioceramic Composite Scaffolds with Antioxidative Activity for Enhanced Osteochondral Regeneration.

Adv Healthc Mater. 2024-5

引用本文的文献

[1]
Injectable Ca/Sr-crosslinked hydrogel with sustained release of LGK-974 for cartilage repair and osteoarthritis prevention via alleviating inflammatory microenvironment.

Mater Today Bio. 2025-8-5

[2]
Bioprinting for drug screening: A path toward reducing animal testing or redefining preclinical research?

Bioact Mater. 2025-7-15

[3]
Enhancing the maturity of engineered cartilage from Wharton's jelly-derived photo-crosslinked hydrogel using dynamic bioreactors and its outcomes in animal models.

Regen Biomater. 2025-5-8

[4]
ROS-Activated Nanohydrogel Scaffolds with Multi-Factors Controlled Release for Targeted Dual-Lineage Repair of Osteochondral Defects.

Adv Sci (Weinh). 2025-5

[5]
From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications.

Bioact Mater. 2025-3-6

[6]
Biphasic biomimetic scaffolds based on a regionally decalcified bone framework and pre-chondrogenic microspheres for osteochondral defect repair.

Mater Today Bio. 2025-1-13

[7]
A Multifunctional Cobalt-Containing Implant for Treating Biofilm Infections and Promoting Osteointegration in Infected Bone Defects Through Macrophage-Mediated Immunomodulation.

Adv Sci (Weinh). 2025-1

[8]
Drug-Loaded Bioscaffolds for Osteochondral Regeneration.

Pharmaceutics. 2024-8-21

[9]
Natural Affinity Driven Modification by Silicene to Construct a "Thermal Switch" for Tumorous Bone Loss.

Adv Sci (Weinh). 2024-9

[10]
Stem Cell and Regenerative Therapies for the Treatment of Osteoporotic Vertebral Compression Fractures.

Int J Mol Sci. 2024-5-2

本文引用的文献

[1]
Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration.

Theranostics. 2017-8-11

[2]
Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents.

Theranostics. 2017-5-12

[3]
Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo.

Adv Mater. 2017-6-6

[4]
The Effect and Osteoblast Signaling Response of Trace Silicon Doping Hydroxyapatite.

Biol Trace Elem Res. 2017-4-29

[5]
Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis vitro and enhancement of bone repair .

Theranostics. 2017-2-27

[6]
A Difunctional Regeneration Scaffold for Knee Repair based on Aptamer-Directed Cell Recruitment.

Adv Mater. 2017-2-10

[7]
Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model.

Theranostics. 2017-1-1

[8]
Influence of biological scaffold regulation on the proliferation of chondrocytes and the repair of articular cartilage.

Am J Transl Res. 2016-11-15

[9]
Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of CCN family protein 2 (CCN2), a protein involved in the regeneration of articular cartilage: mechanism underlying this stimulation.

Osteoarthritis Cartilage. 2017-5

[10]
Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice.

Proc Natl Acad Sci U S A. 2016-5-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索