Suppr超能文献

目前对沉默调节蛋白在多能干细胞重编程和分化中的作用的理解和未来展望。

Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells.

机构信息

1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan.

*These two authors made equal contributions.

出版信息

Exp Biol Med (Maywood). 2018 Mar;243(6):563-575. doi: 10.1177/1535370218759636.

Abstract

In mammalian cells, there are seven members of the sirtuin protein family (SIRT1-7). SIRT1, SIRT6, and SIRT7 catalyze posttranslational modification of proteins in the nucleus, SIRT3, SIRT4, and SIRT5 are in the mitochondria and SIRT2 is in the cytosol. SIRT1 can deacetylate the transcription factor SOX2 and regulate induced pluripotent stem cells (iPSCs) reprogramming through the miR-34a-SIRT1-p53 axis. SIRT2 can regulate the function of pluripotent stem cells through GSK3β. SIRT3 can positively regulate PPAR gamma coactivator 1-alpha (PGC-1α) expression during the differentiation of stem cells. SIRT4 has no direct role in regulating reprogramming but may have the potential to prevent senescence of somatic cells and to facilitate the reprogramming of iPSCs. SIRT5 can deacetylate STAT3, which is an important transcription factor in regulating pluripotency and differentiation of stem cells. SIRT6 can enhance the reprogramming efficiency of iPSCs from aged skin fibroblasts through miR-766 and increase the expression levels of the reprogramming genes including Sox2, Oct4, and Nanog through acetylation of histone H3 lysine 56. SIRT7 plays a regulatory role in the process of mesenchymal-to-epithelial transition (MET), which has been suggested to be a crucial process in the generation of iPSCs from fibroblasts. In this review, we summarize recent findings of the roles of sirtuins in the metabolic reprogramming and differentiation of stem cells and discuss the bidirectional changes in the gene expression and activities of sirtuins in the commitment of differentiation of mesenchymal stem cells (MSCs) and reprogramming of somatic cells to iPSCs, respectively. Thus, understanding the molecular basis of the interplay between different sirtuins and mitochondrial function will provide new insights into the regulation of differentiation of stem cells and iPSCs formation, respectively, and may help design effective stem cell therapies for regenerative medicine. Impact statement This is an extensive review of the recent advances in our understanding of the roles of some members of the sirtuins family, such as SIRT1, SIRT2, SIRT3, and SIRT6, in the regulation of intermediary metabolism during stem cell differentiation and in the reprogramming of somatic cells to form induced pluripotent stem cells (iPSCs). This article provides an updated integrated view on the mechanisms by which sirtuins-mediated posttranslational protein modifications regulate mitochondrial biogenesis, bioenergetics, and antioxidant defense in the maintenance and differentiation of stem cells and in iPSCs formation, respectively.

摘要

在哺乳动物细胞中,有七种 Sirtuin 蛋白家族成员(SIRT1-7)。SIRT1、SIRT6 和 SIRT7 催化细胞核中蛋白质的翻译后修饰,SIRT3、SIRT4 和 SIRT5 位于线粒体中,SIRT2 位于细胞质中。SIRT1 可以去乙酰化转录因子 SOX2,并通过 miR-34a-SIRT1-p53 轴调节诱导多能干细胞 (iPSC) 重编程。SIRT2 可以通过 GSK3β 调节多能干细胞的功能。SIRT3 可以在干细胞分化过程中正向调节过氧化物酶体增殖物激活受体γ共激活因子 1-α (PGC-1α) 的表达。SIRT4 对重编程没有直接作用,但可能有潜力防止体细胞衰老,并促进 iPSC 的重编程。SIRT5 可以去乙酰化 STAT3,STAT3 是调节干细胞多能性和分化的重要转录因子。SIRT6 可以通过 miR-766 提高衰老皮肤成纤维细胞来源的 iPSC 重编程效率,并通过组蛋白 H3 赖氨酸 56 的乙酰化增加包括 Sox2、Oct4 和 Nanog 在内的重编程基因的表达水平。SIRT7 在间充质-上皮转化 (MET) 过程中发挥调节作用,该过程被认为是成纤维细胞生成 iPSC 的关键过程。在这篇综述中,我们总结了 Sirtuins 在干细胞代谢重编程和分化中的作用的最新发现,并讨论了 Sirtuins 在间充质干细胞 (MSC) 分化和体细胞重编程为 iPSC 的基因表达和活性的双向变化。因此,了解不同 Sirtuins 与线粒体功能之间相互作用的分子基础,将分别为干细胞分化和 iPSC 形成的调控提供新的见解,并可能有助于设计有效的干细胞治疗再生医学。影响说明这是对我们对 Sirtuins 家族某些成员(如 SIRT1、SIRT2、SIRT3 和 SIRT6)在干细胞分化过程中调节中间代谢以及体细胞重编程为诱导多能干细胞 (iPSC) 中的作用的最新进展的广泛综述。本文提供了一个更新的综合观点,即 Sirtuins 介导的翻译后蛋白质修饰如何调节线粒体生物发生、生物能学和抗氧化防御,以维持干细胞的分化和 iPSC 的形成。

相似文献

3
Sirt6 regulates efficiency of mouse somatic reprogramming and maintenance of pluripotency.
Stem Cell Res Ther. 2019 Jan 10;10(1):9. doi: 10.1186/s13287-018-1109-5.
5
Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling.
Biochim Biophys Acta. 2016 Apr;1860(4):686-93. doi: 10.1016/j.bbagen.2016.01.009. Epub 2016 Jan 15.
6
Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer.
Semin Cell Dev Biol. 2016 Apr;52:119-31. doi: 10.1016/j.semcdb.2016.02.011. Epub 2016 Feb 8.
7
The role of sirtuins in cardiac disease.
Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1375-89. doi: 10.1152/ajpheart.00053.2015. Epub 2015 Jul 31.
8
Sox2 Deacetylation by Sirt1 Is Involved in Mouse Somatic Reprogramming.
Stem Cells. 2015 Jul;33(7):2135-47. doi: 10.1002/stem.2012. Epub 2015 May 4.

引用本文的文献

1
Genes as Genome Stabilizers in Pluripotent Stem Cells.
Adv Exp Med Biol. 2025;1483:21-47. doi: 10.1007/5584_2025_853.
2
The role of hypoxic microenvironment in autoimmune diseases.
Front Immunol. 2024 Nov 7;15:1435306. doi: 10.3389/fimmu.2024.1435306. eCollection 2024.
5
Sirtuins and redox signaling interplay in neurogenesis, neurodegenerative diseases, and neural cell reprogramming.
Front Neurosci. 2023 Feb 1;17:1073689. doi: 10.3389/fnins.2023.1073689. eCollection 2023.
6
Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting.
Cell Mol Biol Lett. 2022 Aug 19;27(1):69. doi: 10.1186/s11658-022-00366-0.
7
Fluorofenidone Inhibits UUO/IRI-Induced Renal Fibrosis by Reducing Mitochondrial Damage.
Oxid Med Cell Longev. 2022 Mar 20;2022:2453617. doi: 10.1155/2022/2453617. eCollection 2022.
9
Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation.
J Pers Med. 2021 Oct 20;11(11):1050. doi: 10.3390/jpm11111050.
10
Oxygen as a Master Regulator of Human Pluripotent Stem Cell Function and Metabolism.
J Pers Med. 2021 Sep 10;11(9):905. doi: 10.3390/jpm11090905.

本文引用的文献

2
SIRT6 promotes osteogenic differentiation of mesenchymal stem cells through BMP signaling.
Sci Rep. 2017 Aug 31;7(1):10229. doi: 10.1038/s41598-017-10323-z.
4
SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK.
Am J Physiol Endocrinol Metab. 2017 Oct 1;313(4):E493-E505. doi: 10.1152/ajpendo.00122.2017. Epub 2017 Aug 1.
5
SIRT3 Enhances Mesenchymal Stem Cell Longevity and Differentiation.
Oxid Med Cell Longev. 2017;2017:5841716. doi: 10.1155/2017/5841716. Epub 2017 Jun 21.
6
Emerging Roles for SIRT5 in Metabolism and Cancer.
Antioxid Redox Signal. 2018 Mar 10;28(8):677-690. doi: 10.1089/ars.2017.7264. Epub 2017 Oct 26.
7
SIRT1 Enhances the Survival of Human Embryonic Stem Cells by Promoting DNA Repair.
Stem Cell Reports. 2017 Aug 8;9(2):629-641. doi: 10.1016/j.stemcr.2017.06.001. Epub 2017 Jul 6.
8
Sirt6 alters adult hippocampal neurogenesis.
PLoS One. 2017 Jun 23;12(6):e0179681. doi: 10.1371/journal.pone.0179681. eCollection 2017.
10
SIRT2 and glycolytic enzyme acetylation in pluripotent stem cells.
Nat Cell Biol. 2017 Apr 27;19(5):412-414. doi: 10.1038/ncb3522.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验