Suppr超能文献

使用具有结构和功能测量的 2 维连续时间隐马尔可夫模型预测青光眼进展的临床预测性能。

Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements.

机构信息

New York University Langone Eye Center, New York University School of Medicine, New York, New York.

New York University Langone Eye Center, New York University School of Medicine, New York, New York; Division of Biostatistics, Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York.

出版信息

Ophthalmology. 2018 Sep;125(9):1354-1361. doi: 10.1016/j.ophtha.2018.02.010. Epub 2018 Mar 20.

Abstract

PURPOSE

Previously, we introduced a state-based 2-dimensional continuous-time hidden Markov model (2D CT HMM) to model the pattern of detected glaucoma changes using structural and functional information simultaneously. The purpose of this study was to evaluate the detected glaucoma change prediction performance of the model in a real clinical setting using a retrospective longitudinal dataset.

DESIGN

Longitudinal, retrospective study.

PARTICIPANTS

One hundred thirty-four eyes from 134 participants diagnosed with glaucoma or as glaucoma suspects (average follow-up, 4.4±1.2 years; average number of visits, 7.1±1.8).

METHODS

A 2D CT HMM model was trained using OCT (Cirrus HD-OCT; Zeiss, Dublin, CA) average circumpapillary retinal nerve fiber layer (cRNFL) thickness and visual field index (VFI) or mean deviation (MD; Humphrey Field Analyzer; Zeiss). The model was trained using a subset of the data (107 of 134 eyes [80%]) including all visits except for the last visit, which was used to test the prediction performance (training set). Additionally, the remaining 27 eyes were used for secondary performance testing as an independent group (validation set). The 2D CT HMM predicts 1 of 4 possible detected state changes based on 1 input state.

MAIN OUTCOME MEASURES

Prediction accuracy was assessed as the percentage of correct prediction against the patient's actual recorded state. In addition, deviations of the predicted long-term detected change paths from the actual detected change paths were measured.

RESULTS

Baseline mean ± standard deviation age was 61.9±11.4 years, VFI was 90.7±17.4, MD was -3.50±6.04 dB, and cRNFL thickness was 74.9±12.2 μm. The accuracy of detected glaucoma change prediction using the training set was comparable with the validation set (57.0% and 68.0%, respectively). Prediction deviation from the actual detected change path showed stability throughout patient follow-up.

CONCLUSIONS

The 2D CT HMM demonstrated promising prediction performance in detecting glaucoma change performance in a simulated clinical setting using an independent cohort. The 2D CT HMM allows information from just 1 visit to predict at least 5 subsequent visits with similar performance.

摘要

目的

此前,我们引入了一种基于状态的二维连续时间隐马尔可夫模型(2D CT HMM),以同时使用结构和功能信息来模拟检测到的青光眼变化模式。本研究的目的是使用回顾性纵向数据集评估该模型在真实临床环境中检测到的青光眼变化预测性能。

设计

纵向、回顾性研究。

参与者

134 名参与者的 134 只眼被诊断为青光眼或疑似青光眼(平均随访时间为 4.4±1.2 年;平均就诊次数为 7.1±1.8 次)。

方法

使用 OCT(Cirrus HD-OCT;蔡司,都柏林,加利福尼亚州)平均周边视网膜神经纤维层(cRNFL)厚度和视野指数(VFI)或平均偏差(MD;Humphrey 视野分析仪;蔡司)训练 2D CT HMM 模型。该模型使用数据的子集(134 只眼中的 107 只[80%])进行训练,包括除最后一次就诊外的所有就诊,最后一次就诊用于测试预测性能(训练集)。此外,其余 27 只眼被用作独立组进行二次性能测试(验证集)。2D CT HMM 根据 1 个输入状态预测 4 种可能的检测到的状态变化之一。

主要观察指标

预测准确性评估为患者实际记录状态的正确预测百分比。此外,还测量了预测的长期检测到的变化路径与实际检测到的变化路径之间的偏差。

结果

基线时的平均标准偏差年龄为 61.9±11.4 岁,VFI 为 90.7±17.4,MD 为-3.50±6.04 dB,cRNFL 厚度为 74.9±12.2 μm。使用训练集进行检测到的青光眼变化预测的准确性与验证集相当(分别为 57.0%和 68.0%)。从实际检测到的变化路径的预测偏差在整个患者随访过程中保持稳定。

结论

2D CT HMM 在使用独立队列模拟临床环境中检测青光眼变化方面表现出有前途的预测性能。该 2D CT HMM 允许仅使用 1 次就诊信息即可预测至少接下来 5 次就诊,其性能相似。

相似文献

2
Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance.
Ophthalmology. 2013 Dec;120(12):2493-2500. doi: 10.1016/j.ophtha.2013.07.027. Epub 2013 Sep 17.
4
Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Ophthalmology. 2018 Dec;125(12):1907-1912. doi: 10.1016/j.ophtha.2018.05.020. Epub 2018 Jun 19.
5
The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT421-8. doi: 10.1167/iovs.15-18940.
7
Patterns of Progressive Ganglion Cell-Inner Plexiform Layer Thinning in Glaucoma Detected by OCT.
Ophthalmology. 2018 Oct;125(10):1515-1525. doi: 10.1016/j.ophtha.2018.03.052. Epub 2018 Apr 25.
8
Forecasting Retinal Nerve Fiber Layer Thickness from Multimodal Temporal Data Incorporating OCT Volumes.
Ophthalmol Glaucoma. 2020 Jan-Feb;3(1):14-24. doi: 10.1016/j.ogla.2019.11.001. Epub 2019 Nov 8.
10
Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study.
Ophthalmology. 2009 Jul;116(7):1257-63, 1263.e1-2. doi: 10.1016/j.ophtha.2009.04.013. Epub 2009 May 22.

引用本文的文献

本文引用的文献

3
Prediction accuracy of a novel dynamic structure-function model for glaucoma progression.
Invest Ophthalmol Vis Sci. 2014 Oct 30;55(12):8086-94. doi: 10.1167/iovs.14-14928.
4
Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden Markov model.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):444-51. doi: 10.1007/978-3-642-40763-5_55.
5
Evaluating objective and subjective quantitative parameters at the initial visit to predict future glaucomatous visual field progression.
Ophthalmic Surg Lasers Imaging. 2012 Sep-Oct;43(5):416-24. doi: 10.3928/15428877-20120524-01. Epub 2012 May 31.
7
Combining structural and functional measurements to improve estimates of rates of glaucomatous progression.
Am J Ophthalmol. 2012 Jun;153(6):1197-205.e1. doi: 10.1016/j.ajo.2011.11.015. Epub 2012 Feb 7.
9
Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point.
Br J Ophthalmol. 2012 Jan;96(1):47-52. doi: 10.1136/bjo.2010.196907. Epub 2011 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验