IBM Research-Australia, Melbourne, Australia.
Department of Ophthalmology, NYU Langone Health, NYU Eye Center, New York, New York.
Ophthalmol Glaucoma. 2020 Jan-Feb;3(1):14-24. doi: 10.1016/j.ogla.2019.11.001. Epub 2019 Nov 8.
The purpose of this study was to develop a machine learning model to forecast future circumpapillary retinal nerve fiber layer (cpRNFL) thickness in eyes of healthy, glaucoma suspect, and glaucoma participants from multimodal temporal data.
Retrospective analysis of a longitudinal clinical cohort.
Longitudinal clinical cohort of healthy, glaucoma suspect, and glaucoma participants.
The forecasting models used multimodal patient information including clinical (age and intraocular pressure), structural (cpRNFL thickness derived from scans as well as deep learning-derived OCT image features), and functional (visual field test parameters) data and the intervisit interval for prediction of cpRNFL thickness at the next visit. Four models were developed based on the number of visits used (n = 1 to 4). Longitudinal data from 1089 participants (mean observation period, 3.65±1.73 years) was used with 80% of the cohort for the development of the models. The results of our models were compared with those of a commonly adopted linear regression model, which we refer to here as (LTBE).
The mean absolute difference and Pearson's correlation coefficient between the true and forecasted values of the cpRNFL in the healthy, glaucoma suspect, and glaucoma patients.
The best forecasting model of cpRNFL was obtained using 3 visits and incorporated deep learning-derived OCT image features. The mean error was 1.10±0.60 μm, 1.79±1.73 μm, and 1.87±1.85 μm in eyes of healthy, glaucoma suspect, and glaucoma participants, respectively. Our method significantly outperformed the LTBE model for glaucoma suspect and glaucoma participants ( < 0.001), which showed a mean error of 1.55±1.16 μm, 2.4±2.67 μm, and 3.02±3.06 μm in the 3 groups, respectively. The Pearson's correlation coefficient between the forecasted value and the measured thickness was ρ = 0.96 ( < 0.01), ρ = 0.95 ( < 0.01), and ρ = 0.96 ( < 0.01) for the 3 groups, respectively.
The performance of the proposed forecasting model for cpRNFL is consistent across glaucoma suspect and glaucoma patients, which implies the robustness of the developed model against the disease state. These forecasted values may be useful to personalize patient care by determining the most appropriate intervisit schedule for timely interventions.
本研究旨在开发一种机器学习模型,以从多模态时间数据中预测健康、青光眼疑似和青光眼参与者的眼周神经纤维层(cpRNFL)厚度的未来变化。
回顾性分析纵向临床队列。
健康、青光眼疑似和青光眼参与者的纵向临床队列。
预测模型使用多模态患者信息,包括临床(年龄和眼内压)、结构(扫描得出的 cpRNFL 厚度以及深度学习衍生的 OCT 图像特征)和功能(视野测试参数)数据以及两次就诊之间的间隔,以预测下一次就诊时的 cpRNFL 厚度。根据就诊次数(n = 1 到 4)开发了 4 种模型。使用来自 1089 名参与者的纵向数据(平均观察期为 3.65±1.73 年),其中 80%的队列用于模型的开发。我们的模型结果与常用的线性回归模型(我们称之为 LTBE)进行了比较。
健康、青光眼疑似和青光眼患者 cpRNFL 真实值与预测值之间的平均绝对差值和 Pearson 相关系数。
使用 3 次就诊的最佳 cpRNFL 预测模型,纳入了深度学习衍生的 OCT 图像特征。健康、青光眼疑似和青光眼患者的平均误差分别为 1.10±0.60 μm、1.79±1.73 μm 和 1.87±1.85 μm。我们的方法在青光眼疑似和青光眼患者中明显优于 LTBE 模型(<0.001),后者在这 3 组中的平均误差分别为 1.55±1.16 μm、2.4±2.67 μm 和 3.02±3.06 μm。预测值与测量厚度之间的 Pearson 相关系数分别为 ρ = 0.96(<0.01)、ρ = 0.95(<0.01)和 ρ = 0.96(<0.01)。
所提出的 cpRNFL 预测模型在青光眼疑似和青光眼患者中的表现一致,这意味着该模型对疾病状态具有稳健性。这些预测值可能有助于通过确定最合适的就诊间隔来确定及时干预的时间,从而实现患者护理的个性化。