Suppr超能文献

从包含 OCT 容积的多时相数据预测视网膜神经纤维层厚度。

Forecasting Retinal Nerve Fiber Layer Thickness from Multimodal Temporal Data Incorporating OCT Volumes.

机构信息

IBM Research-Australia, Melbourne, Australia.

Department of Ophthalmology, NYU Langone Health, NYU Eye Center, New York, New York.

出版信息

Ophthalmol Glaucoma. 2020 Jan-Feb;3(1):14-24. doi: 10.1016/j.ogla.2019.11.001. Epub 2019 Nov 8.

Abstract

PURPOSE

The purpose of this study was to develop a machine learning model to forecast future circumpapillary retinal nerve fiber layer (cpRNFL) thickness in eyes of healthy, glaucoma suspect, and glaucoma participants from multimodal temporal data.

DESIGN

Retrospective analysis of a longitudinal clinical cohort.

PARTICIPANTS

Longitudinal clinical cohort of healthy, glaucoma suspect, and glaucoma participants.

METHODS

The forecasting models used multimodal patient information including clinical (age and intraocular pressure), structural (cpRNFL thickness derived from scans as well as deep learning-derived OCT image features), and functional (visual field test parameters) data and the intervisit interval for prediction of cpRNFL thickness at the next visit. Four models were developed based on the number of visits used (n = 1 to 4). Longitudinal data from 1089 participants (mean observation period, 3.65±1.73 years) was used with 80% of the cohort for the development of the models. The results of our models were compared with those of a commonly adopted linear regression model, which we refer to here as (LTBE).

MAIN OUTCOME MEASURES

The mean absolute difference and Pearson's correlation coefficient between the true and forecasted values of the cpRNFL in the healthy, glaucoma suspect, and glaucoma patients.

RESULTS

The best forecasting model of cpRNFL was obtained using 3 visits and incorporated deep learning-derived OCT image features. The mean error was 1.10±0.60 μm, 1.79±1.73 μm, and 1.87±1.85 μm in eyes of healthy, glaucoma suspect, and glaucoma participants, respectively. Our method significantly outperformed the LTBE model for glaucoma suspect and glaucoma participants ( < 0.001), which showed a mean error of 1.55±1.16 μm, 2.4±2.67 μm, and 3.02±3.06 μm in the 3 groups, respectively. The Pearson's correlation coefficient between the forecasted value and the measured thickness was ρ = 0.96 ( < 0.01), ρ = 0.95 ( < 0.01), and ρ = 0.96 ( < 0.01) for the 3 groups, respectively.

CONCLUSIONS

The performance of the proposed forecasting model for cpRNFL is consistent across glaucoma suspect and glaucoma patients, which implies the robustness of the developed model against the disease state. These forecasted values may be useful to personalize patient care by determining the most appropriate intervisit schedule for timely interventions.

摘要

目的

本研究旨在开发一种机器学习模型,以从多模态时间数据中预测健康、青光眼疑似和青光眼参与者的眼周神经纤维层(cpRNFL)厚度的未来变化。

设计

回顾性分析纵向临床队列。

参与者

健康、青光眼疑似和青光眼参与者的纵向临床队列。

方法

预测模型使用多模态患者信息,包括临床(年龄和眼内压)、结构(扫描得出的 cpRNFL 厚度以及深度学习衍生的 OCT 图像特征)和功能(视野测试参数)数据以及两次就诊之间的间隔,以预测下一次就诊时的 cpRNFL 厚度。根据就诊次数(n = 1 到 4)开发了 4 种模型。使用来自 1089 名参与者的纵向数据(平均观察期为 3.65±1.73 年),其中 80%的队列用于模型的开发。我们的模型结果与常用的线性回归模型(我们称之为 LTBE)进行了比较。

主要观察指标

健康、青光眼疑似和青光眼患者 cpRNFL 真实值与预测值之间的平均绝对差值和 Pearson 相关系数。

结果

使用 3 次就诊的最佳 cpRNFL 预测模型,纳入了深度学习衍生的 OCT 图像特征。健康、青光眼疑似和青光眼患者的平均误差分别为 1.10±0.60 μm、1.79±1.73 μm 和 1.87±1.85 μm。我们的方法在青光眼疑似和青光眼患者中明显优于 LTBE 模型(<0.001),后者在这 3 组中的平均误差分别为 1.55±1.16 μm、2.4±2.67 μm 和 3.02±3.06 μm。预测值与测量厚度之间的 Pearson 相关系数分别为 ρ = 0.96(<0.01)、ρ = 0.95(<0.01)和 ρ = 0.96(<0.01)。

结论

所提出的 cpRNFL 预测模型在青光眼疑似和青光眼患者中的表现一致,这意味着该模型对疾病状态具有稳健性。这些预测值可能有助于通过确定最合适的就诊间隔来确定及时干预的时间,从而实现患者护理的个性化。

相似文献

1
Forecasting Retinal Nerve Fiber Layer Thickness from Multimodal Temporal Data Incorporating OCT Volumes.
Ophthalmol Glaucoma. 2020 Jan-Feb;3(1):14-24. doi: 10.1016/j.ogla.2019.11.001. Epub 2019 Nov 8.
2
Diagnostic Ability of Individual Macular Layers by Spectral-Domain OCT in Different Stages of Glaucoma.
Ophthalmol Glaucoma. 2020 Sep-Oct;3(5):314-326. doi: 10.1016/j.ogla.2020.04.003. Epub 2020 Apr 21.
8
Performance of the Rule of 5 for Detecting Glaucoma Progression between Visits with OCT.
Ophthalmol Glaucoma. 2019 Sep-Oct;2(5):319-326. doi: 10.1016/j.ogla.2019.05.003. Epub 2019 May 29.
9
Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss.
Ophthalmology. 2018 Apr;125(4):578-587. doi: 10.1016/j.ophtha.2017.10.029. Epub 2017 Nov 22.

引用本文的文献

2
A Hybrid Deep Learning-Based Approach for Visual Field Test Forecasting.
Ophthalmol Sci. 2025 Apr 24;5(5):100803. doi: 10.1016/j.xops.2025.100803. eCollection 2025 Sep-Oct.
3
Deep Learning Approach Predicts Longitudinal Retinal Nerve Fiber Layer Thickness Changes.
Bioengineering (Basel). 2025 Jan 31;12(2):139. doi: 10.3390/bioengineering12020139.
4
Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic gap on structural imaging.
Front Ophthalmol (Lausanne). 2022 Sep 21;2:937205. doi: 10.3389/fopht.2022.937205. eCollection 2022.
5
Advancing Glaucoma Care: Integrating Artificial Intelligence in Diagnosis, Management, and Progression Detection.
Bioengineering (Basel). 2024 Jan 26;11(2):122. doi: 10.3390/bioengineering11020122.
6
Use of artificial intelligence in forecasting glaucoma progression.
Taiwan J Ophthalmol. 2023 May 23;13(2):168-183. doi: 10.4103/tjo.TJO-D-23-00022. eCollection 2023 Apr-Jun.
7
Clinical Applications of Artificial Intelligence in Glaucoma.
J Ophthalmic Vis Res. 2023 Feb 21;18(1):97-112. doi: 10.18502/jovr.v18i1.12730. eCollection 2023 Jan-Mar.
8
The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques.
Front Med (Lausanne). 2022 Jun 30;9:891369. doi: 10.3389/fmed.2022.891369. eCollection 2022.
9
A Case for the Use of Artificial Intelligence in Glaucoma Assessment.
Ophthalmol Glaucoma. 2022 May-Jun;5(3):e3-e13. doi: 10.1016/j.ogla.2021.12.003. Epub 2021 Dec 22.

本文引用的文献

3
Structural Change Can Be Detected in Advanced-Glaucoma Eyes.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT511-8. doi: 10.1167/iovs.15-18929.
4
Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study.
Ophthalmology. 2016 Jun;123(6):1201-10. doi: 10.1016/j.ophtha.2016.02.017. Epub 2016 Mar 19.
7
Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden Markov model.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):444-51. doi: 10.1007/978-3-642-40763-5_55.
10
Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):217-22. doi: 10.1167/iovs.09-3468. Epub 2009 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验