Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China.
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics & Moe Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China.
ACS Nano. 2018 Apr 24;12(4):3917-3927. doi: 10.1021/acsnano.8b01456. Epub 2018 Mar 28.
This study reports a family of photothermal materials, metal ion/tannic acid assemblies (MITAs). MITAs from Fe, V, and Ru afford excellent photothermal efficiency (η ≈ 40%). Sharply differing from the currently existing photothermal agents, MITAs are highlighted by merits including green synthesis, facile incorporation of diagnostic metal ions, and particularly topology-independent adhesion. Owing to the adhesion nature of MITAs, various kinds of MITA-based nanoengineerings are readily available via the self-adhesion of MITAs onto diverse templates, enabling MITAs well suited as a photothermal platform for versatile combination with other therapy approaches and imaging techniques. As a proof of concept, polymeric/inorganic nanoparticle/nanovesicle-supported Fe-tannic acid (FeTA) is fabricated. The photothermal effect is shown to be unaffected by the template origin and type and FeTA thickness on the templates. We validate the potency of nanovesicle-supported FeTA (PNV@FeTA) for tumor-specific photoactivated utilizations, including NIR photothermal therapy with complete tumor elimination, photothermal imaging (PTI), and photoacoustic imaging (PAI) in addition to T-MRI imaging. PNV@FeTA can be simultaneously equipped with functionalities, including T-MRI imaging by additionally doping Mn and NIR fluorescence imaging by encapsulating a hydrophilic NIR fluoroprobe. MITA demonstrates unparalleled superiority as a photothermal platform in engineering multimodal theranostics for advanced applications.
本研究报告了一类光热材料,即金属离子/单宁酸组装体(MITAs)。Fe、V 和 Ru 的 MITA 具有优异的光热效率(η≈40%)。与目前现有的光热试剂相比,MITA 的优点包括绿色合成、易于掺入诊断金属离子以及特别的拓扑结构无关的粘附性。由于 MITA 的粘附性质,通过 MITA 自身粘附到各种模板上,各种基于 MITA 的纳米工程技术都很容易实现,这使得 MITA 非常适合作为光热平台,与其他治疗方法和成像技术进行多种组合。作为概念验证,制备了聚合物/无机纳米颗粒/纳米囊泡负载的 Fe-单宁酸(FeTA)。结果表明,模板的起源和类型以及模板上 FeTA 的厚度对光热效应没有影响。我们验证了纳米囊泡负载的 FeTA(PNV@FeTA)在肿瘤特异性光激活应用中的功效,包括完全消除肿瘤的近红外光热治疗、光热成像(PTI)和光声成像(PAI)以及 T-MRI 成像。PNV@FeTA 可以同时配备多种功能,包括通过额外掺杂 Mn 进行 T-MRI 成像,以及通过封装亲水性近红外荧光探针进行近红外荧光成像。MITA 作为光热平台在工程化多模态治疗学中具有无与伦比的优势,可用于先进的应用。