Suppr超能文献

非对称卷积神经网络(NSCT)域中低剂量X射线图像的泊松-高斯噪声分析与估计

Poisson-Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain.

作者信息

Lee Sangyoon, Lee Min Seok, Kang Moon Gi

机构信息

School of Electrical and Electronics Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.

出版信息

Sensors (Basel). 2018 Mar 29;18(4):1019. doi: 10.3390/s18041019.

Abstract

The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson-Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson-Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods.

摘要

利用泊松和高斯混合模型可以分析低剂量情况下X射线传感器所获图像的噪声分布。多尺度变换是近年来最常用的降噪方法之一。多尺度域中各子带噪声分布的估计是进行降噪的最重要因素,非下采样轮廓波变换(NSCT)是一种有效的尺度和方向分解方法。在本研究中,我们使用人工生成的噪声来分析和估计NSCT域中低剂量X射线图像的泊松-高斯噪声。利用无噪声的低频带系数和有噪声子带系数的方差来分析子带系数的噪声分布。变换后的噪声也服从泊松-高斯分布,并确定了子带与全波段图像噪声参数之间的关系。然后,我们分析实际图像的噪声以验证理论分析。将所提出的噪声估计方法与现有的降噪方法进行比较,证实了所提出的方法优于传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3ad/5948630/915d786c96f0/sensors-18-01019-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验