Suppr超能文献

双组分电纺纤维的短期降解:通过原子力显微镜分析进行定性和定量评估

Short-Term Degradation of Bi-Component Electrospun Fibers: Qualitative and Quantitative Evaluations via AFM Analysis.

作者信息

Marrese Marica, Cirillo Valentina, Guarino Vincenzo, Ambrosio Luigi

机构信息

Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, 80125 Naples, Italy.

出版信息

J Funct Biomater. 2018 Mar 30;9(2):27. doi: 10.3390/jfb9020027.

Abstract

Electrospun polymeric fibers are currently used as 3D models for in vitro applications in biomedical areas, i.e., tissue engineering, cell and drug delivery. The high customization of the electrospinning process offers numerous opportunities to manipulate and control surface area, fiber diameter, and fiber density to evaluate the response of cells under different morphological and/or biochemical stimuli. The aim of this study was to investigate-via atomic force microscopy (AFM)-the chemical and morphological changes in bi-component electrospun fibers (BEFs) during the in vitro degradation process using a biological medium. BEFs were fabricated by electrospinning a mixture of synthetic-polycaprolactone (PCL)-and natural polymers (gelatin) into a binary solution. During the hydrolytic degradation of protein, no significant remarkable effects were recognized in terms of fiber integrity. However, increases in surface roughness as well as a decrease in fiber diameter as a function of the degradation conditions were detected. We suggest that morphological and chemical changes due to the local release of gelatin positively influence cell behavior in culture, in terms of cell adhesion and spreading, thus working to mimic the native microenvironment of natural tissues.

摘要

电纺聚合物纤维目前被用作生物医学领域体外应用的三维模型,即组织工程、细胞和药物递送。电纺丝工艺的高度定制提供了许多机会来操纵和控制表面积、纤维直径和纤维密度,以评估细胞在不同形态和/或生化刺激下的反应。本研究的目的是通过原子力显微镜(AFM)研究在体外降解过程中,使用生物培养基时双组分电纺纤维(BEF)的化学和形态变化。BEF是通过将合成聚己内酯(PCL)和天然聚合物(明胶)的混合物电纺成二元溶液制成的。在蛋白质的水解降解过程中,在纤维完整性方面未观察到明显显著的影响。然而,检测到表面粗糙度增加以及纤维直径随降解条件而减小。我们认为,由于明胶的局部释放导致的形态和化学变化,在细胞粘附和铺展方面对培养中的细胞行为产生积极影响,从而起到模拟天然组织原生微环境的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/6023316/d6a8884ae184/jfb-09-00027-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验