Suppr超能文献

一种评估功能连接矩阵随机性的方法。

A method to assess randomness of functional connectivity matrices.

机构信息

The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States.

The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Department of Electrical and Computer Engineering, MSC01 1100, 1 University of New Mexico Albuquerque, NM 87131, United States.

出版信息

J Neurosci Methods. 2018 Jun 1;303:146-158. doi: 10.1016/j.jneumeth.2018.03.015. Epub 2018 Mar 27.

Abstract

BACKGROUND

Functional magnetic resonance imaging (fMRI) allows for the measurement of functional connectivity of the brain. In this context, graph theory has revealed distinctive non-random connectivity patterns. However, the application of graph theory to fMRI often utilizes non-linear transformations (absolute value) to extract edge representations.

NEW METHOD

In contrast, this work proposes a mathematical framework for the analysis of randomness directly from functional connectivity assessments. The framework applies random matrix theory to the analysis of functional connectivity matrices (FCMs). The developed randomness measure includes its probability density function and statistical testing method.

RESULTS

The utilized data comes from a previous study including 603 healthy individuals. Results demonstrate the application of the proposed method, confirming that whole brain FCMs are not random matrices. On the other hand, several FCM submatrices did not significantly test out of randomness.

COMPARISON WITH EXISTING METHODS

The proposed method does not replace graph theory measures; instead, it assesses a different aspect of functional connectivity. Features not included in graph theory are small numbers of nodes, testing submatrices of an FCM and handling negative as well as positive edge values.

CONCLUSION

The random test not only determines randomness, but also serves as an indicator of smaller non-random patterns within a non-random FCM. Outcomes suggest that a lower order model may be sufficient as a broad description of the data, but it also indicates a loss of information. The developed randomness measure assesses a different aspect of randomness from that of graph theory.

摘要

背景

功能磁共振成像(fMRI)可用于测量大脑的功能连接。在这种情况下,图论揭示了独特的非随机连接模式。然而,图论在 fMRI 中的应用通常利用非线性变换(绝对值)来提取边缘表示。

新方法

相比之下,这项工作提出了一种从功能连接评估中直接分析随机性的数学框架。该框架将随机矩阵理论应用于功能连接矩阵(FCM)的分析。所开发的随机性度量包括其概率密度函数和统计测试方法。

结果

使用的数据来自先前的一项研究,其中包括 603 名健康个体。结果证明了所提出方法的应用,证实了整个大脑 FCM 不是随机矩阵。另一方面,几个 FCM 子矩阵没有明显地超出随机性。

与现有方法的比较

所提出的方法并没有取代图论度量;相反,它评估了功能连接的不同方面。图论不包括的特征是节点数量少、测试 FCM 的子矩阵以及处理正负边缘值。

结论

随机测试不仅确定了随机性,而且还作为非随机 FCM 中较小的非随机模式的指标。结果表明,较低阶模型可能作为数据的广泛描述是足够的,但也表明信息的损失。所开发的随机性度量评估了与图论不同的随机性方面。

相似文献

1
A method to assess randomness of functional connectivity matrices.一种评估功能连接矩阵随机性的方法。
J Neurosci Methods. 2018 Jun 1;303:146-158. doi: 10.1016/j.jneumeth.2018.03.015. Epub 2018 Mar 27.
2
Randomness in resting state functional connectivity matrices.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5563-5566. doi: 10.1109/EMBC.2016.7591987.
4
Time-dependence of graph theory metrics in functional connectivity analysis.功能连接性分析中图形理论指标的时间依赖性。
Neuroimage. 2016 Jan 15;125:601-615. doi: 10.1016/j.neuroimage.2015.10.070. Epub 2015 Oct 27.
8
Metric learning with spectral graph convolutions on brain connectivity networks.基于脑连接网络的谱图卷积的度量学习。
Neuroimage. 2018 Apr 1;169:431-442. doi: 10.1016/j.neuroimage.2017.12.052. Epub 2017 Dec 24.
10
BRAPH: A graph theory software for the analysis of brain connectivity.BRAPH:一款用于分析脑连接性的图论软件。
PLoS One. 2017 Aug 1;12(8):e0178798. doi: 10.1371/journal.pone.0178798. eCollection 2017.

引用本文的文献

本文引用的文献

6
Comparative Connectomics.比较连接组学。
Trends Cogn Sci. 2016 May;20(5):345-361. doi: 10.1016/j.tics.2016.03.001. Epub 2016 Mar 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验