Suppr超能文献

一种由结构和功能网络连通性共同引导的空间受限独立成分分析。

A spatially constrained independent component analysis jointly informed by structural and functional network connectivity.

作者信息

Fouladivanda Mahshid, Iraji Armin, Wu Lei, van Erp Theodorus G M, Belger Aysenil, Hawamdeh Faris, Pearlson Godfrey D, Calhoun Vince D

机构信息

Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.

Georgia State University, Atlanta, GA, USA.

出版信息

bioRxiv. 2024 Jun 1:2023.08.13.553101. doi: 10.1101/2023.08.13.553101.

Abstract

There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. Brain connectivity of different modalities provides insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multi-modal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multi-objective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multi-modal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared to the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity.

摘要

越来越多的神经影像学研究推动了大脑结构和功能联合连通性的研究。不同模态的大脑连通性通过利用互补信息,为大脑功能组织提供了深入了解,特别是对于精神分裂症等脑部疾病。在本文中,我们提出了一种多模态独立成分分析(ICA)模型,该模型利用来自结构和功能大脑连通性的信息,并以空间图谱为指导来估计内在连通性网络(ICN)。结构连通性通过对扩散加权磁共振成像(dMRI)进行全脑纤维束成像来估计,而功能连通性则来自静息态功能磁共振成像(rs-fMRI)。所提出的结构 - 功能连通性和空间约束ICA(sfCICA)模型使用多目标优化框架在个体水平上估计ICN。我们使用合成数据集和真实数据集(包括来自149名精神分裂症患者和162名对照的dMRI和rs-fMRI)对我们的模型进行了评估。多模态ICN显示出具有较高结构连通性的ICN之间功能耦合增强、模块性改善以及网络区分度提高,尤其是在精神分裂症中。组间差异的统计分析表明,与单模态模型相比,所提出的模型存在更显著的差异。总之,sfCICA模型显示出从结构和功能连通性的联合信息中受益。这些发现表明,在同时有效学习并利用结构连通性增强连通性估计方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed21/11160563/54b40c427a38/nihpp-2023.08.13.553101v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验