Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
Graduate School of Science and Technology, Gunma University, Gunma, Japan.
Kidney Int. 2018 Jun;93(6):1483-1489. doi: 10.1016/j.kint.2018.01.015. Epub 2018 Mar 30.
Renal tubulointerstitial hypoxia is recognized as a final common pathway of chronic kidney disease and is considered a promising drug target. However, hypoxia in the tubules is not well examined because of limited detection methods. Here, we devised a method to visualize renal tubular oxygen tension with spatial resolution at a cellular level using the cell-penetrating phosphorescent probe, BTPDM1 (an iridium-based cationic lipophilic dye), and confocal phosphorescence lifetime imaging microscopy to precisely assess renal hypoxia. Imaging with BTPDM1 revealed an oxygen gradient between S1 and S2 segments in mouse kidney. We also demonstrated that our microscopy system can detect subtle changes of hypoxemia and reoxygenation, and the acquired phosphorescence lifetime can be converted to partial pressure of oxygen. This new method allows, for the first time, visualization of intravital oxygen gradients at the renal surface with high spatial resolution. Thus, the confocal phosphorescence lifetime imaging microscopy platform, combined with BTPDM1, will promote an accurate understanding of tissue hypoxia, including renal hypoxia.
肾小管间质缺氧被认为是慢性肾脏病的最终共同途径,被认为是有前途的药物靶点。然而,由于检测方法有限,肾小管中的缺氧情况并没有得到很好的检查。在这里,我们设计了一种使用穿透细胞的磷光探针 BTPDM1(一种基于铱的阳离子亲脂性染料)在细胞水平上具有空间分辨率的方法来可视化肾小管中的氧张力,并用共聚焦磷光寿命成像显微镜来精确评估肾缺氧。使用 BTPDM1 进行成像显示,在小鼠肾脏的 S1 和 S2 段之间存在氧梯度。我们还证明,我们的显微镜系统可以检测到低氧血症和再氧合的细微变化,并且获得的磷光寿命可以转换为氧分压。这种新方法首次允许以高空间分辨率在肾表面可视化活体氧梯度。因此,结合 BTPDM1 的共聚焦磷光寿命成像显微镜平台将促进对组织缺氧(包括肾缺氧)的准确理解。