Suppr超能文献

利用 scGESTALT 对转录组和 CRISPR-Cas9 条形码进行单细胞读取,进行大规模的细胞谱系重建。

Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT.

机构信息

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.

Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.

出版信息

Nat Protoc. 2018 Nov;13(11):2685-2713. doi: 10.1038/s41596-018-0058-x.

Abstract

Lineage relationships among the large number of heterogeneous cell types generated during development are difficult to reconstruct in a high-throughput manner. We recently established a method, scGESTALT, that combines cumulative editing of a lineage barcode array by CRISPR-Cas9 with large-scale transcriptional profiling using droplet-based single-cell RNA sequencing (scRNA-seq). The technique generates edits in the barcode array over multiple timepoints using Cas9 and pools of single-guide RNAs (sgRNAs) introduced during early and late zebrafish embryonic development, which distinguishes it from similar Cas9 lineage-tracing methods. The recorded lineages are captured, along with thousands of cellular transcriptomes, to build lineage trees with hundreds of branches representing relationships among profiled cell types. Here, we provide details for (i) generating transgenic zebrafish; (ii) performing multi-timepoint barcode editing; (iii) building scRNA-seq libraries from brain tissue; and (iv) concurrently amplifying lineage barcodes from captured single cells. Generating transgenic lines takes 6 months, and performing barcode editing and generating single-cell libraries involve 7 d of hands-on time. scGESTALT provides a scalable platform to map lineage relationships between cell types in any system that permits genome editing during development, regeneration, or disease.

摘要

在高通量水平上,很难重建发育过程中产生的大量异质细胞类型之间的谱系关系。我们最近建立了一种方法,scGESTALT,它将 CRISPR-Cas9 对谱系条码阵列的累积编辑与基于液滴的单细胞 RNA 测序(scRNA-seq)的大规模转录谱分析相结合。该技术使用 Cas9 和在早期和晚期斑马鱼胚胎发育过程中引入的单指导 RNA(sgRNA)的池,在多个时间点对条码阵列进行编辑,这使其有别于类似的 Cas9 谱系追踪方法。记录的谱系与数千个细胞转录组一起被捕获,以构建具有数百个分支的谱系树,代表所分析细胞类型之间的关系。在这里,我们提供了(i)生成转基因斑马鱼;(ii)进行多次条码编辑;(iii)从脑组织中构建 scRNA-seq 文库;以及(iv)同时从捕获的单细胞中扩增谱系条码的详细信息。生成转基因系需要 6 个月的时间,而进行条码编辑和生成单细胞文库则需要 7 天的时间。scGESTALT 提供了一个可扩展的平台,可用于在允许在发育、再生或疾病过程中进行基因组编辑的任何系统中绘制细胞类型之间的谱系关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/117a/6279253/b79acfd67464/nihms-996552-f0001.jpg

相似文献

引用本文的文献

7
Multi-omics in exploring the pathophysiology of diabetic retinopathy.多组学在探索糖尿病视网膜病变的病理生理学中的应用
Front Cell Dev Biol. 2024 Dec 11;12:1500474. doi: 10.3389/fcell.2024.1500474. eCollection 2024.
8
Barcoding Notch signaling in the developing brain.在发育中的大脑中标记Notch信号通路。
Development. 2024 Dec 15;151(24). doi: 10.1242/dev.203102. Epub 2024 Dec 20.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验