Suppr超能文献

美国州医疗大麻法律与医疗保险处方中阿片类药物开方之间的关联。

Association Between US State Medical Cannabis Laws and Opioid Prescribing in the Medicare Part D Population.

机构信息

Department of Public Administration & Policy, University of Georgia, Athens.

Department of Health Policy & Management, University of Georgia, Athens.

出版信息

JAMA Intern Med. 2018 May 1;178(5):667-672. doi: 10.1001/jamainternmed.2018.0266.

Abstract

IMPORTANCE

Opioid-related mortality increased by 15.6% from 2014 to 2015 and increased almost 320% between 2000 and 2015. Recent research finds that the use of all pain medications (opioid and nonopioid collectively) decreases in Medicare Part D and Medicaid populations when states approve medical cannabis laws (MCLs). The association between MCLs and opioid prescriptions is not well understood.

OBJECTIVE

To examine the association between prescribing patterns for opioids in Medicare Part D and the implementation of state MCLs.

DESIGN, SETTING, AND PARTICIPANTS: Longitudinal analysis of the daily doses of opioids filled in Medicare Part D for all opioids as a group and for categories of opioids by state and state-level MCLs from 2010 through 2015. Separate models were estimated first for whether the state had implemented any MCL and second for whether a state had implemented either a dispensary-based or a home cultivation only-based MCL.

MAIN OUTCOMES AND MEASURES

The primary outcome measure was the total number of daily opioid doses prescribed (in millions) in each US state for all opioids. The secondary analysis examined the association between MCLs separately by opioid class.

RESULTS

From 2010 to 2015 there were 23.08 million daily doses of any opioid dispensed per year in the average state under Medicare Part D. Multiple regression analysis results found that patients filled fewer daily doses of any opioid in states with an MCL. The associations between MCLs and any opioid prescribing were statistically significant when we took the type of MCL into account: states with active dispensaries saw 3.742 million fewer daily doses filled (95% CI, -6.289 to -1.194); states with home cultivation only MCLs saw 1.792 million fewer filled daily doses (95% CI, -3.532 to -0.052). Results varied by type of opioid, with statistically significant estimated negative associations observed for hydrocodone and morphine. Hydrocodone use decreased by 2.320 million daily doses (or 17.4%) filled with dispensary-based MCLs (95% CI, -3.782 to -0.859; P = .002) and decreased by 1.256 million daily doses (or 9.4%) filled with home-cultivation-only-based MCLs (95% CI, -2.319 to -0.193; P = .02). Morphine use decreased by 0.361 million daily doses (or 20.7%) filled with dispensary-based MCLs (95% CI, -0.718 to -0.005; P = .047).

CONCLUSIONS AND RELEVANCE

Medical cannabis laws are associated with significant reductions in opioid prescribing in the Medicare Part D population. This finding was particularly strong in states that permit dispensaries, and for reductions in hydrocodone and morphine prescriptions.

摘要

重要性

从 2014 年到 2015 年,阿片类药物相关死亡率上升了 15.6%,而在 2000 年到 2015 年期间,这一数字几乎增加了 320%。最近的研究发现,当各州批准医疗大麻法(MCL)时,医疗保险部分 D 和医疗补助计划中的所有人用止痛药(阿片类药物和非阿片类药物)的使用量都会减少。MCL 与阿片类药物处方之间的关联尚不清楚。

目的

研究医疗保险部分 D 中阿片类药物处方模式与州 MCL 实施之间的关联。

设计、设置和参与者:对 2010 年至 2015 年期间,医疗保险部分 D 中所有阿片类药物以及按州和州级 MCL 分类的阿片类药物的每日剂量进行的纵向分析。首先分别估计了州是否实施了任何 MCL,其次是州是否实施了基于药房的或仅基于家庭种植的 MCL。

主要结局和措施

主要结局指标是医疗保险部分 D 中每个州的所有阿片类药物的每日处方剂量总数(百万)。二次分析分别检查了 MCL 对不同类别的阿片类药物的影响。

结果

从 2010 年到 2015 年,医疗保险部分 D 中每个州每年平均开出 2308 万份任何阿片类药物的每日剂量。多元回归分析结果发现,在有 MCL 的州,患者的每日阿片类药物剂量减少。当我们考虑到 MCL 的类型时,MCL 与任何阿片类药物处方之间的关联具有统计学意义:有活性药房的州,每日剂量减少 374.2 万剂(95%CI,-6.289 至-1.194);只有家庭种植 MCL 的州,每日剂量减少 179.2 万剂(95%CI,-3.532 至-0.052)。结果因阿片类药物的类型而异,氢可酮和吗啡的估计负相关具有统计学意义。有基于药房的 MCL,氢可酮的使用量减少了 232 万剂(或 17.4%)(95%CI,-3.782 至-0.859;P=0.002);有基于家庭种植的 MCL,氢可酮的使用量减少了 125.6 万剂(或 9.4%)(95%CI,-2.319 至-0.193;P=0.02)。吗啡的使用量减少了 36.1 万剂(或 20.7%),有基于药房的 MCL(95%CI,-0.718 至-0.005;P=0.047)。

结论和相关性

医疗大麻法与医疗保险部分 D 人群中阿片类药物处方的显著减少有关。在允许药房存在的州,这种发现尤其强烈,并且减少了氢可酮和吗啡的处方。

相似文献

引用本文的文献

本文引用的文献

9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验