Suppr超能文献

基于分治策略的一维卷积神经网络的人类活动识别方法,通过测试数据锐化实现。

Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening.

机构信息

HCI Lab., College of Computer Science, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea.

出版信息

Sensors (Basel). 2018 Apr 1;18(4):1055. doi: 10.3390/s18041055.

Abstract

Human Activity Recognition (HAR) aims to identify the actions performed by humans using signals collected from various sensors embedded in mobile devices. In recent years, deep learning techniques have further improved HAR performance on several benchmark datasets. In this paper, we propose one-dimensional Convolutional Neural Network (1D CNN) for HAR that employs a divide and conquer-based classifier learning coupled with test data sharpening. Our approach leverages a two-stage learning of multiple 1D CNN models; we first build a binary classifier for recognizing abstract activities, and then build two multi-class 1D CNN models for recognizing individual activities. We then introduce test data sharpening during prediction phase to further improve the activity recognition accuracy. While there have been numerous researches exploring the benefits of activity signal denoising for HAR, few researches have examined the effect of test data sharpening for HAR. We evaluate the effectiveness of our approach on two popular HAR benchmark datasets, and show that our approach outperforms both the two-stage 1D CNN-only method and other state of the art approaches.

摘要

人体活动识别(HAR)旨在使用从嵌入移动设备中的各种传感器收集的信号来识别人类执行的动作。近年来,深度学习技术在多个基准数据集上进一步提高了 HAR 的性能。在本文中,我们提出了一种用于 HAR 的一维卷积神经网络(1D CNN),该方法采用基于分治的分类器学习和测试数据锐化相结合。我们的方法利用了多 1D CNN 模型的两阶段学习;我们首先构建一个用于识别抽象活动的二进制分类器,然后构建两个用于识别单个活动的多类 1D CNN 模型。然后,我们在预测阶段引入测试数据锐化,以进一步提高活动识别的准确性。虽然已经有许多研究探索了活动信号去噪对 HAR 的好处,但很少有研究探讨测试数据锐化对 HAR 的影响。我们在两个流行的 HAR 基准数据集上评估了我们方法的有效性,并表明我们的方法优于两阶段 1D CNN 方法和其他最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验