Suppr超能文献

预测新型化学物质的严重罕见不良反应。

Predicting serious rare adverse reactions of novel chemicals.

机构信息

Department of Computer Science, University of Northern Iowa, Cedar Falls, IA, USA.

Department of Computer Science, Hunter College, The Graduate Center, The City University of New York, New York, NY, USA.

出版信息

Bioinformatics. 2018 Aug 15;34(16):2835-2842. doi: 10.1093/bioinformatics/bty193.

Abstract

MOTIVATION

Adverse drug reactions (ADRs) are one of the main causes of death and a major financial burden on the world's economy. Due to the limitations of the animal model, computational prediction of serious and rare ADRs is invaluable. However, current state-of-the-art computational methods do not yield significantly better predictions of rare ADRs than random guessing.

RESULTS

We present a novel method, based on the theory of 'compressed sensing' (CS), which can accurately predict serious side-effects of candidate and market drugs. Not only is our method able to infer new chemical-ADR associations using existing noisy, biased and incomplete databases, but our data also demonstrate that the accuracy of CS in predicting a serious ADR for a candidate drug increases with increasing knowledge of other ADRs associated with the drug. In practice, this means that as the candidate drug moves up the different stages of clinical trials, the prediction accuracy of our method will increase accordingly.

AVAILABILITY AND IMPLEMENTATION

The program is available at https://github.com/poleksic/side-effects.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

药物不良反应 (ADRs) 是导致死亡的主要原因之一,也是全球经济的主要财政负担。由于动物模型的局限性,严重和罕见 ADR 的计算预测非常有价值。然而,目前最先进的计算方法并不能比随机猜测更准确地预测罕见的 ADR。

结果

我们提出了一种新方法,基于“压缩感知” (CS) 的理论,该方法可以准确预测候选药物和市场药物的严重副作用。我们的方法不仅能够利用现有嘈杂、有偏差和不完整的数据库推断新的化学-ADR 关联,而且我们的数据还表明,CS 在预测候选药物的严重 ADR 方面的准确性随着与药物相关的其他 ADR 知识的增加而增加。实际上,这意味着随着候选药物在临床试验的不同阶段推进,我们方法的预测准确性将相应提高。

可用性和实现

该程序可在 https://github.com/poleksic/side-effects 上获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83f5/6084596/9994b6499588/bty193f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验