Habashy Walid S, Milfort Marie C, Rekaya Romdhane, Aggrey Samuel E
NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
Department of Animal and Poultry Production, Damanhour University, Damanhour, Al-Behira, Egypt.
Mol Biol Rep. 2018 Jun;45(3):389-394. doi: 10.1007/s11033-018-4173-0. Epub 2018 Apr 4.
Heat stress causes critical molecular dysfunction that affects productivity in chickens. Thus, the purpose of this study was to evaluate the effect of heat stress (HS) on the expression of select genes in the oxidation/antioxidation machinery in the liver of chickens. Chickens at 14 days of age were randomly assigned to two treatment groups and kept under either a constant normal temperature (25 °C) or high temperature (35 °C) in individual cages for 12 days. mRNA expression of Nrf2, oxidants NADPH(NOX): [NOX1, NOX2, NOX3, NOX4, NOX5 and DUOX2], and antioxidants [SOD1, CAT, GR, GPx1, NQO1] in the liver were analyzed at 1 and 12 days post-HS. We show that, HS changes the mRNA expression of oxidants thereby increasing cellular reactive oxygen species (ROS). Additionally, persistent HS up-regulates SOD which converts superoxides to hydrogen peroxide. We further demonstrated the dynamic relationship between catalase, GSH peroxidase (GPx) and NADPH under both acute and chronic heat stress. The pentose phosphate pathway could be important under HS since it generates NADPH which serves as a cofactor for GPx. Also, methionine, a precursor of cysteine has been shown to have reducing properties and thereby makes for an alternative fuel for redox processes. Genes in the ROS and antioxidant generation pathways may provide insight into nutritional intervention strategies, especially the use of methionine and/or cysteine when birds are suffering from heat stress.
热应激会导致严重的分子功能障碍,影响鸡的生产性能。因此,本研究的目的是评估热应激(HS)对鸡肝脏氧化/抗氧化机制中特定基因表达的影响。将14日龄的鸡随机分为两个处理组,分别置于个体笼中,在恒定的正常温度(25℃)或高温(35℃)下饲养12天。在热应激后1天和12天分析肝脏中Nrf2、氧化剂NADPH(NOX):[NOX1、NOX²、NOX³、NOX4、NOX5和DUOX2]以及抗氧化剂[SOD1、CAT、GR、GPx1、NQO1]的mRNA表达。我们发现,热应激会改变氧化剂的mRNA表达,从而增加细胞活性氧(ROS)。此外,持续的热应激会上调将超氧化物转化为过氧化氢的超氧化物歧化酶(SOD)。我们进一步证明了在急性和慢性热应激下过氧化氢酶、谷胱甘肽过氧化物酶(GPx)和NADPH之间的动态关系。磷酸戊糖途径在热应激下可能很重要,因为它产生NADPH,而NADPH是GPx的辅助因子。此外,半胱氨酸的前体蛋氨酸已被证明具有还原特性,因此可作为氧化还原过程的替代燃料。ROS和抗氧化剂生成途径中的基因可能为营养干预策略提供见解,特别是在鸡遭受热应激时使用蛋氨酸和/或半胱氨酸。